$9$ કુમારી અને $4$ કુમારીઓમાંથી $7$ સભ્યોની સમિતિ બનાવવી છે. જેમાં બરાબર $3$ કુમારીઓ હોય એવી કેટલી સમિતિની રચના થઈ શકે ?
A committee of $7$ has to be formed from $9$ boys and $4$ girls.
since exactly $3$ girls are to be there in every committee, each committee must consist of $(7-3)=4$ boys only
Thus, in this case, required number of ways $=\,^{4} C_{3} \times^{9} C_{4}=\frac{4 !}{3 ! 1 !} \times \frac{9 !}{4 ! 5 !}$
$=4 \times \frac{9 \times 8 \times 7 \times 6 \times 5 !}{4 \times 3 \times 2 \times 5 !}$
$=504$
જો $^n{C_{r - 1}} = 36,{\;^n}{C_r} = 84$ અને $^n{C_{r + 1}} = 126$ ,તો $r$ મેળવો.
તમામ $\mathrm{S}$ સાથે આવે તે રીતે $\mathrm{ASSASSINATION}$ શબ્દના મૂળાક્ષરોની ગોઠવણી કેટલા પ્રકારે કરી શકાય ?
$52$ પત્તા ચાર ખેલાડીઓ વચ્ચે એકસમાન કેટલી રીતે વહેંચી શકાય ?
જો અંકોનું પુનરાવર્તન ન કરવાનું હોય તો $0, 1, 2, 4$ અને $5$ અંકોનો ઉપયોગ કરી $1000$ થી નાની કેટલી સંખ્યા બનાવી શકાય?
એક રેખા પર છ $‘+’$ અને ચાર $‘-’$ ની નિશાની રાખવામાં આવે છે કે જેથી કોઇપણ બે $‘-’$ નિશાની પાસપાસે ન આવે તો આવી કુલ ગોઠવણી મેળવો.