A committee of $7$ has to be formed from $9$ boys and $4$ girls. In how many ways can this be done when the committee consists of:
exactly $3$ girls $?$
A committee of $7$ has to be formed from $9$ boys and $4$ girls.
since exactly $3$ girls are to be there in every committee, each committee must consist of $(7-3)=4$ boys only
Thus, in this case, required number of ways $=\,^{4} C_{3} \times^{9} C_{4}=\frac{4 !}{3 ! 1 !} \times \frac{9 !}{4 ! 5 !}$
$=4 \times \frac{9 \times 8 \times 7 \times 6 \times 5 !}{4 \times 3 \times 2 \times 5 !}$
$=504$
$^{20}C_1 + 3 ^{20}C_2 + 3 ^{20}C_3 + ^{20}C_4$ is equal to-
The number of onto functions $f$ from $\{1, 2, 3, …, 20\}$ only $\{1, 2, 3, …, 20\}$ such that $f(k)$ is a multiple of $3$, whenever $k$ is a multiple of $4$, is
$\left( {\begin{array}{*{20}{c}}n\\{n - r}\end{array}} \right)\, + \,\left( {\begin{array}{*{20}{c}}n\\{r + 1}\end{array}} \right)$, whenever $0 \le r \le n - 1$is equal to
To fill $12$ vacancies there are $25$ candidates of which five are from scheduled caste. If $3$ of the vacancies are reserved for scheduled caste candidates while the rest are open to all, then the number of ways in which the selection can be made
From a class of $25$ students, $10$ are to be chosen for an excursion party. There are $3$ students who decide that either all of them will join or none of them will join. In how many ways can the excursion party be chosen?