वृत्त ${x^2} + {y^2} - 2x - 6y + 9 = 0$ की स्पर्श रेखा $x = 0$, अर्थात् $y$-अक्ष पर किस बिन्दु पर होगी
$(0, 1)$
$(0, 2)$
$(0, 3)$
$(0, 4)$
यदि एक रेखा मूल बिन्दु से गुजरे तथा वृत्त ${(x - 4)^2} + {(y + 5)^2} = 25$ को स्पर्श करे तो उसकी प्रवणता होनी चाहिये
रेखा $x\cos \alpha + y\sin \alpha = p$, वृत्त ${x^2} + {y^2} - 2ax\cos \alpha - 2ay\sin \alpha = 0$ की स्पर्श रेखा होगी, यदि $p = $
वृत्त ${x^2} + {y^2} + 4x + 6y - 39 = 0$ के बिन्दु $(2, 3)$ पर खींचा गया अभिलम्ब वृत्त को पुन: जिस बिन्दु पर मिलेगा वह बिन्दु है
माना मूल बिन्दु से वृत्त $x^{2}+y^{2}-8 x-4 y+16=0$ पर खींची गई स्पर्श रेखायें इसे बिन्दुओं $A$ तथा $B$ पर स्पर्श करती है। तो $( AB )^{2}$ बराबर है
यदि रेखा $y = \sqrt 3 x + k$ वृत्त ${x^2} + {y^2} = 16$ को स्पर्श करती हो, तो $k =$