यदि $P\,(A) = 0.4,\,\,P\,(B) = x,\,\,P\,(A \cup B) = 0.7$ और घटनाएँ $A$ तथा $B$ परस्पर अपवर्जी हों, तो $x = $
$\frac{3}{{10}}$
$\frac{1}{2}$
$\frac{2}{5}$
$\frac{1}{5}$
$A$ और $B$ स्वतंत्र घटनाएँ दी गई हैं जहाँ $P ( A )=0.3, P ( B )=0.6$ तो $P ( A$ और $B$ में कोई भी नहीं) का मान ज्ञात कीजिए।
$P ( A )=\frac{3}{5}$ और $P ( B )=\frac{1}{5},$ दिया गया है। यदि $A$ और $B$ परस्पर अपवर्जी घटनाएँ हैं, तो $P ( A$ या $B$ ), ज्ञात कीजिए।
घटनाएँ $A$ और $B$ इस प्रकार हैं कि $P ( A )=0.42, P ( B )=0.48$ और $P ( A$ और $B )=0.16 .$ ज्ञात कीजिए
$P ( A$ या $B )$
किसी विद्यार्थी के $IIT$ परीक्षा में सफल होने की प्रायिकता $0.2$ एवं रूड़की परीक्षा में सफल होने की प्रायिकता $0.5$ है। यदि उसके दोनों परीक्षाओं में सफल होने की प्रायिकता $0.3$ है, तो उसके दोनों परीक्षाओं में असफल होने की प्रायिकता होगी
एक इलेक्ट्रॉनिक एसेंबली के दो सहायक निकाय $A$ और $B$ हैं। पूर्ववर्ती निरीक्षण द्वारा निम्न प्रायिकताएँ ज्ञात है :
$P ( A$ के असफल होने की $)=0.2$
$P ( B$ के अकेले असफल होने की $)=0.15$
$P ( A$ और $B$ के असफल होने की $)=0.15$
तो, निम्न प्रायिकताएँ ज्ञात कीजिए :
$P ( A$ के अकेले असफल होने की $)$