એક $500 \,N \,m^{-1}$ સ્પ્રિંગ અચળાંક ધરાવતી સ્પ્રિંગની સાથે $5 \,kg$ નો કૉલર (પટ્ટો) જોડાયેલ છે. તે ઘર્ષણ વગર સમક્ષિતિજ સળિયા પર સરકે છે. આ કૉલર તેના સંતુલન સ્થાનેથી $10.0\, cm$ સ્થાનાંતરિત થઈ અને મુક્ત થાય છે. આ કૉલર માટે

$(a)$ દોલનોનો આવર્તકાળ

$(b)$ મહત્તમ ઝડપ અને

$(e)$ મહત્તમ પ્રવેગની ગણતરી કરો.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$(a)$ સમીકરણ વડે આ દોલનનો આવર્તકાળ આપવામાં આવે છે,

$T=2 \pi \sqrt{\frac{m}{k}}=2 \pi \sqrt{\frac{5.0\, kg }{500\,N\,m^{-1}}}$

$=(2 \pi / 10)\, s$

$=0.63 \,s$

$(b)$ ) સ.આ.ગ. કરતા આ કૉલરનો વેગ

$v(t)=-A \omega \sin (\omega t+\phi)$

વડે આપવામાં આવે છે તથા મહત્તમ ઝડપ 

$v_{m}=A \omega$

$=0.1 \times \sqrt{\frac{k}{m}}$

$=0.1 \times \sqrt{\frac{500 \,N\, m ^{-1}}{5 \,kg }}$

$=1 \,m\, s ^{-1}$

અને તે $x = 0$ પર પ્રાપ્ત થાય છે.

$(c)$ સંતુલન સ્થિતિમાંથી થયેલ સ્થાનાંતર $x(t)$ પર આ કૉલરનો પ્રવેગ $a(t) =-\omega^{2} x(t)$ વડે અપાય છે. 

$a(t)$ $=-\frac{k}{m} x(t)$

તેથી મહત્તમ પ્રવેગ 

$a_{\max }=\omega^{2} A$ છે.,

$=\frac{500 \,N m ^{-1}}{5\, kg } \times 0.1\, m$

$=10 \,m s ^{-2}$

અને તે સીમાંત બિંદુઓએ જોવા મળે છે. 

Similar Questions

$l$ લંબાઇ અને $k$. બળઅચળાંક ઘરાવતી સ્પ્રિંગને $m$ લગાવીને સરળ આવર્તગતિ કરાવતા તેની આવૃતિ $ f_1$.છે. સ્પ્રિંગને બે સમાન ભાગમાં ટુકડા કરી એક ટુકડાને $m$ દળ લટકાવીને સરળ આવર્ત ગતિ કરાવતા તેની આવૃતિ $f_2$...

આકૃતિમાં દર્શાવેલ તંત્રની સરળ આવર્તગતિની આવૃતિ કેટલી હશે?

  • [AIIMS 2001]

સ્પ્રિંગના છેડે જોડેલ બ્લોકના દળ પર તેના દોલનનો આવર્તકાળ કેવી રીતે આધાર રાખે છે ? 

જ્યારે $m$ જેટલા દળને સ્પ્રિંગ સાથે જોડવામાં આવે છે. ત્યારે તે $4 \,s$ ના આવર્તકાળથી દોલન કરે છે. જ્યારે વધારાનું $2 \,kg$ દળ જોડવામાં આવે છે. તો તેનો આવર્તકાળ $1\, s$ જેટલો વધે છે. તો $m$ નું મુલ્ય ......... $kg$

$2\,kg$ દળ ધરાવતા બ્લોકને $20\,N / m$ સ્પ્રિંગ અચળાંક ધરાવતી બે સમાન સ્પ્રિંગ સાથે જોડવામાં આવે છે. બ્લોકને ધર્ષણ રહિત સપાટી પર મૂકવામાં આવે છે અને સ્પ્રિંગના છેડાને જડ આધાર સાથે લગાડવામાં આવે છે. (આકૃતિમાં જુઓ).જ્યારે દળને સંતુલન સ્થિતિમાંથી સ્થાનાંતરિત કરવામાં આવે ત્યારે તે સરળ આવર્ત ગતિ કરે છે. દોલનોનો આવર્ત કાળ $\frac{\pi}{\sqrt{x}}$ છે. તો $x$ નું મૂલ્ય $...........$ છે.

  • [JEE MAIN 2023]