$l$ લંબાઇ અને $k$. બળઅચળાંક ઘરાવતી સ્પ્રિંગને $m$ લગાવીને સરળ આવર્તગતિ કરાવતા તેની આવૃતિ $ f_1$.છે. સ્પ્રિંગને બે સમાન ભાગમાં ટુકડા કરી એક ટુકડાને $m$ દળ લટકાવીને સરળ આવર્ત ગતિ કરાવતા તેની આવૃતિ $f_2$...
${f_1} = \sqrt 2 {f_2}$
${f_1} = {f_2}$
${f_1} = 2{f_2}$
${f_2} = \sqrt 2 {f_1}$
સ્પ્રિંગના છેડે લટકાવેલ પદાર્થના દોલનો સ.આ. હોવા માટેની શરત લખો.
સ્પ્રિંગના છેડે જોડેલ બ્લોકના દળ પર તેના દોલનનો આવર્તકાળ કેવી રીતે આધાર રાખે છે ?
$2\,kg$ દળ ધરાવતા બ્લોકને $20\,N / m$ સ્પ્રિંગ અચળાંક ધરાવતી બે સમાન સ્પ્રિંગ સાથે જોડવામાં આવે છે. બ્લોકને ધર્ષણ રહિત સપાટી પર મૂકવામાં આવે છે અને સ્પ્રિંગના છેડાને જડ આધાર સાથે લગાડવામાં આવે છે. (આકૃતિમાં જુઓ).જ્યારે દળને સંતુલન સ્થિતિમાંથી સ્થાનાંતરિત કરવામાં આવે ત્યારે તે સરળ આવર્ત ગતિ કરે છે. દોલનોનો આવર્ત કાળ $\frac{\pi}{\sqrt{x}}$ છે. તો $x$ નું મૂલ્ય $...........$ છે.
સ્વાધ્યાયમાં, ચાલો આપણે જ્યારે સ્પ્રિંગ ખેંચાયેલી ના હોય ત્યારની દ્રવ્યમાનની સ્થિતિને $x = 0$ લઈએ અને ડાબાથી જમણી તરફની દિશાને $X-$ અક્ષની ધન દિશા તરીકે લઈએ. દોલન કરતાં આ દ્રવ્યમાન આપણે જ્યારે સ્ટૉપવૉચ શરૂ કરીએ $(t = 0)$ તે ક્ષણે આ દ્રવ્યમાન
$(a)$ મધ્યમાન સ્થાને
$(b) $ મહત્તમ ખેંચાયેલા સ્થિતિ પર, અને
$(c)$ મહત્તમ સંકોચિત સ્થિતિ પર હોય તે દરેક કિસ્સા માટે $x$ ને $t$ ના વિધેય તરીકે દર્શાવો.
સ.આ.ગ. માટેનાં આ વિધેયો આવૃત્તિમાં, કંપવિસ્તારમાં અથવા પ્રારંભિક કાળમાં બીજા કરતાં કેવી રીતે અલગ પડે છે ?
$700g$ નો પદાર્થ દૂર કરતાં આવર્તકાળ $3sec$ મળે છે,હવે $500g$ પદાર્થને પણ દૂર કરવામાં આવે તો આવર્તકાળ કેટલો .... $s$ થાય?