આકૃતિમાં દર્શાવેલ તંત્રની સરળ આવર્તગતિની આવૃતિ કેટલી હશે?
$\frac{1}{{2\pi }}\sqrt {\frac{K}{m}} $
$\frac{1}{{2\pi }}\sqrt {\frac{{({K_1} + {K_2})m}}{{{K_1}{K_2}}}} $
$2\pi \sqrt {\frac{K}{m}} $
$\frac{1}{{2\pi }}\sqrt {\frac{{{K_1}{K_2}}}{{m({K_1} + {K_2})}}} $
સમક્ષિતિજ ગોઠવેલી સ્પ્રિંગ બ્લોક પ્રણાલીનો આવર્તકાળ $T$ છે. હવે સ્પ્રિંગને ચોથા ભાગની કાપીનો ફરી બ્લોક ઊર્ધ્વતલમાં જોડવામાં આવે છે. તો એના ઊર્ધ્વતલમાં થતાં દોલનનો આવર્તકાળ કેટલો થશે ?
આકૃતિમાં દર્શવ્યા પ્રમાણે બ્લોક $P$ અને $Q$ વચ્ચે ઘર્ષણ છે. પરંતુ $Q$ અને તળિયાની સપાટી વચ્યે ઘર્ષણ લાગતું નથી. સ્પ્રિંગની સામાન્ય સ્થિતિમાં બ્લોક $Q, P$ તે $x=0$ સ્થિતિમાં છે. હવે બ્લોક $Q$ જમણી તરફ થોડો ખેંચીને છોડવામાં આવે છે. આ સ્પ્રિંગ બ્લોક પ્રણાલી $A$ જેટલા કંપવિસ્તારથી દોલનો કરે છે. જો આ સ્થિતિ $P$ બ્લોક $Q$ પરથી સરકવા લાગે તો ક્યા સ્થાને સરકીને નીચે પડશે?
આકૃતિ $(a)$ બતાવે છે કે $k$ બળ-અચળાંકવાળી એક સ્પ્રિંગના એક છેડાને દૃઢ રીતે જડેલ છે અને તેના મુક્ત છેડા સાથે $m$ દ્રવ્યમાન જોડેલ છે. મુક્ત છેડા પર લગાડવામાં આવતું બળ $F$ એ સ્પ્રિંગને ખેંચે છે. આકૃતિ $(b)$ માં આ જ સ્પ્રિંગ બંને છેડાથી મુક્ત છે અને એક દ્રવ્યમાન $m$ બંને છેડા પર જોડેલ છે. આકૃતિ $(b)$ માંની સ્પ્રિંગના દરેક છેડાને એક સમાન બળ $F$ દ્વારા ખેંચવામાં આવેલ છે.
$(a)$ આ બે કિસ્સાઓમાં સ્પ્રિંગનું મહત્તમ વિસ્તરણ કેટલું છે ?
$(b)$ જો આકૃતિ $(a)$ માંનું દ્રવ્યમાન અને આકૃતિ $(b)$ નાં બે દ્રવ્યમાનોને જો મુક્ત કરવામાં આવે તો દરેક કિસ્સામાં દોલનોનો આવર્તકાળ કેટલો થશે ?
સ્પ્રિંગ બેલેન્સમાં જે સ્કેલ છે તે $0$ થી $50\, kg$ સુધીનો છે. સ્કેલની લંબાઈ $20\, cm$ છે. આ કાંટા પર લટકાવવામાં આવેલ એક પદાર્થને સ્થાનાંતરિત કરીને મુક્ત કરવામાં આવે છે, તો તે $0.6\, s$ ના આવર્તકાળ સાથે દોલિત થાય છે. આ પદાર્થનું વજન કેટલું હશે ?
$m$ દળ લટકાવેલ સ્પ્રિંગ $2$ સેકંડના આવર્તકાળથી દોલનો કરે છે. તેના દળમાં $2 \,kg$ નો વધારો કરવામાં આવે ત્યારે તેનો આવર્તકાળ $1\, sec$ જેટલો વધે છે તો શરૂઆતનું દળ $m$ કેટલા $kg$ હશે?