$500 \,N \,m ^{-1}$ कमानी स्थिरांक किसी कमानी से $5\, kg$ संहति का कोई कॉलर जुड़ा है जो एक क्षेतिज छड़ पर बिना किसी घर्षण के सरकता है । कॉलर को उसकी साम्यावस्था की स्थिति से $10.0 \,cm$ विस्थापित करके छोड दिया जाता है । कॉलर के
$(a)$ दोलन का आवर्तकाल
$(b)$ अधिकतम चाल तथा
$(c)$ अधिकतम त्वरण परिकलित कीजिए
$(a)$ The period of oscillation
$T=2 \pi \sqrt{\frac{m}{k}}=2 \pi \sqrt{\frac{5.0\, kg }{500\,N\,m^{-1}}}$
$=(2 \pi / 10)\, s$
$=0.63 \,s$
$(b)$ The velocity of the collar executing $SHM$ is given by
$v(t)=-A \omega \sin (\omega t+\phi)$
The maximum speed is given by,
$v_{m}=A \omega$
$=0.1 \times \sqrt{\frac{k}{m}}$
$=0.1 \times \sqrt{\frac{500\, N m ^{-1}}{5\, kg }}$
$=1 \,m s ^{-1}$
and it occurs at $x=0$
$(c)$ The acceleration of the collar at the displacement $x(t)$ from the equilibrium is given by,
$a(t) =-\omega^{2} x(t)$
$=-\frac{k}{m} x(t)$
Therefore, the maximum acceleration is $a_{\max }=\omega^{2} A$
$=\frac{500\, N \,m ^{-1}}{5 \,kg } \times 0.1 \,m$
$=10\, m s ^{-2}$
and it occurs at the extremities.
एक स्प्रिंग का आवर्तकाल $T$ है। यदि इसे $n$ समान भागों में तोड़ दिया जाये तो प्रत्येक भाग का आवर्तकाल होगा
एक स्प्रिंग (कमानी) का कमानी स्थिरांक $k$ है। इसको तीन भागों में काट दिया गया है जिनकी लम्बाइयों का अनुपात $1: 2: 3$ है। इन तीनों भागों को श्रेणी क्रम में जोड़ने पर, संयोजन का कमानी स्थिरांक $k^{\prime}$ तथा समान्तर क्रम में जोड़ने पर $k ^{\prime \prime}$ है तो, अनुपात $k ^{\prime}: k ^{\prime \prime}$ होगा :
आरेख में दर्शाए अनुसार द्रव्यमान $M$ का कोई पिण्ड दो द्रव्यमानहीन कमानियों के बीच किसी चिकने आनत तल पर रखा है। कमानियों के मुक्त सिरे दढ़ सपोर्ट से जुड़े हैं। यदि प्रत्येक कमानी स्थिरांक $k$ है, तो दिए गए पिण्ड के दोलन की आवत्ति होगी।
एक स्प्रिंग से जुड़ा हुआ $1 \;kg$ का एक गुटका $1 \;Hz$ की आवृत्ति से एक घर्षणहीन क्षैतिज मेज पर दोलन करता है। इसी तरह की दो समान्तर स्प्रिंगों से एक $8 \;kg$ का गुटका जोड़कर उसी मेज पर दोलन कराते हैं। $8 \;kg$ के गुटके की दोलन आवृत्ति होगी $\dots \; Hz$
एक द्रव्यमान $m$ एक $K$ बल नियतांक तथा $l$ लम्बाई वाली स्प्रिंग से लटकाया गया है। इस द्रव्यमान की दोलन आवृत्ति ${f_1}$ है। यदि स्प्रिंग को दो बराबर भागों में काटकार उसी द्रव्यमान को एक भाग से लटका दिया जाये, तो अब नयी आवृत्ति ${f_2}$ है। निम्न में से कौनसा सम्बन्ध सत्य है