$\left( {p \wedge  \sim q \wedge  \sim r} \right) \vee \left( { \sim p \wedge q \wedge  \sim r} \right) \vee \left( { \sim p \wedge  \sim q \wedge r} \right)$ is equivalent to-

  • A

    $ \sim \left( {\left( {p \wedge q} \right) \vee \left( {q \wedge r} \right) \vee \left( {r \wedge p} \right)} \right)$

  • B

    $p \vee q \vee r$

  • C

    $  \left( {\left( {p \wedge q} \right) \vee \left( {q \wedge r} \right) \vee \left( {r \wedge p} \right)\left( {p \vee q \vee r} \right)} \right)$

  • D

    $\left( { \sim \left( {(p \wedge q} \right) \vee \left( {q \wedge r} \right) \vee \left( {r \wedge p)} \right) \wedge \left( {p \vee q \vee r} \right)} \right)$

Similar Questions

The maximum number of compound propositions, out of $p \vee r \vee s , p \vee P \vee \sim s , p \vee \sim q \vee s$,

$\sim p \vee \sim r \vee s , \sim p \vee \sim r \vee \sim s , \sim p \vee q \vee \sim s$, $q \vee r \vee \sim s , q \vee \sim r \vee \sim s , \sim p \vee \sim q \vee \sim s$

that can be made simultaneously true by an assignment of the truth values to $p , q , r$ and $s$, is equal to

  • [JEE MAIN 2022]

Let $F_{1}(A, B, C)=(A \wedge \sim B) \vee[\sim C \wedge(A \vee B)] \vee \sim A$ and $F _{2}( A , B )=( A \vee B ) \vee( B \rightarrow \sim A )$ be two logical expressions. Then ...... .

  • [JEE MAIN 2021]

The statement $( p \rightarrow( q \rightarrow p )) \rightarrow( p \rightarrow( p \vee q ))$ is

  • [JEE MAIN 2020]

Which of the following is not a statement

Consider the following statements:

$P$ : I have fever

$Q:$ I will not take medicine

$R$ : I will take rest

The statement "If I have fever, then I will take medicine and I will take rest" is equivalent to:

  • [JEE MAIN 2023]