$\left( {p \wedge \sim q \wedge \sim r} \right) \vee \left( { \sim p \wedge q \wedge \sim r} \right) \vee \left( { \sim p \wedge \sim q \wedge r} \right)$ is equivalent to-
$ \sim \left( {\left( {p \wedge q} \right) \vee \left( {q \wedge r} \right) \vee \left( {r \wedge p} \right)} \right)$
$p \vee q \vee r$
$ \left( {\left( {p \wedge q} \right) \vee \left( {q \wedge r} \right) \vee \left( {r \wedge p} \right)\left( {p \vee q \vee r} \right)} \right)$
$\left( { \sim \left( {(p \wedge q} \right) \vee \left( {q \wedge r} \right) \vee \left( {r \wedge p)} \right) \wedge \left( {p \vee q \vee r} \right)} \right)$
The maximum number of compound propositions, out of $p \vee r \vee s , p \vee P \vee \sim s , p \vee \sim q \vee s$,
$\sim p \vee \sim r \vee s , \sim p \vee \sim r \vee \sim s , \sim p \vee q \vee \sim s$, $q \vee r \vee \sim s , q \vee \sim r \vee \sim s , \sim p \vee \sim q \vee \sim s$
that can be made simultaneously true by an assignment of the truth values to $p , q , r$ and $s$, is equal to
Let $F_{1}(A, B, C)=(A \wedge \sim B) \vee[\sim C \wedge(A \vee B)] \vee \sim A$ and $F _{2}( A , B )=( A \vee B ) \vee( B \rightarrow \sim A )$ be two logical expressions. Then ...... .
The statement $( p \rightarrow( q \rightarrow p )) \rightarrow( p \rightarrow( p \vee q ))$ is
Which of the following is not a statement
Consider the following statements:
$P$ : I have fever
$Q:$ I will not take medicine
$R$ : I will take rest
The statement "If I have fever, then I will take medicine and I will take rest" is equivalent to: