The maximum number of compound propositions, out of $p \vee r \vee s , p \vee P \vee \sim s , p \vee \sim q \vee s$,

$\sim p \vee \sim r \vee s , \sim p \vee \sim r \vee \sim s , \sim p \vee q \vee \sim s$, $q \vee r \vee \sim s , q \vee \sim r \vee \sim s , \sim p \vee \sim q \vee \sim s$

that can be made simultaneously true by an assignment of the truth values to $p , q , r$ and $s$, is equal to

  • [JEE MAIN 2022]
  • A

    $9$

  • B

    $6$

  • C

    $4$

  • D

    $3$

Similar Questions

The statement $p → (p \leftrightarrow  q)$ is logically equivalent to :-

$(p\; \wedge \sim q) \wedge (\sim p \wedge q)$ is

Which of the following statements is a tautology?

  • [JEE MAIN 2020]

The statement $p \to ( q \to p)$ is equivalent to

  • [JEE MAIN 2013]

Consider

Statement $-1 :$$\left( {p \wedge \sim q} \right) \wedge \left( { \sim p \wedge q} \right)$ is a fallacy.

Statement $-2 :$$(p \rightarrow q) \leftrightarrow ( \sim q \rightarrow   \sim  p )$  is a tautology.

  • [AIEEE 2009]