Consider the following statements:
$P$ : I have fever
$Q:$ I will not take medicine
$R$ : I will take rest
The statement "If I have fever, then I will take medicine and I will take rest" is equivalent to:
$((\sim P) \vee \sim Q) \wedge((\sim P) \vee R)$
$((\sim P ) \vee \sim Q ) \wedge((\sim P ) \vee \sim R )$
$(P \vee Q) \wedge((\sim P) \vee R)$
$(P \vee \sim Q) \wedge(P \vee \sim R)$
Negation is $“2 + 3 = 5$ and $8 < 10”$ is
$\left(p^{\wedge} r\right) \Leftrightarrow\left(p^{\wedge}(\sim q)\right)$ is equivalent to $(\sim p)$ when $r$ is.
Which of the following is an open statement
The statement $(p \Rightarrow q) \vee(p \Rightarrow r)$ is NOT equivalent to.
Negation of the compound proposition : If the examination is difficult, then I shall pass if I study hard