જો $z_1$ અને $z_2$ એ એવી બે સંકર સંખ્યાઓ છે કે જેથી $|z_1 + z_2|$ = $1$ અને $\left| {z_1^2 + z_2^2} \right|$ = $25$ થાય તો $\left| {z_1^3 + z_2^3} \right|$ ની ન્યૂનતમ કિમત મેળવો
$24$
$42$
$37$
$33$
ધારો કે $S=\{z \in C:|z-1|=1$ અને $(\sqrt{2}-1)(z+\bar{z})-i(z-\bar{z})=2 \sqrt{2}\}$.ધારો કે $\mathrm{z}_1, \mathrm{z}_2$ $\in S$ એવી છે કે જેથી $\left|z_1\right|=\max _{z \in S}|z|$ અને $\left|z_2\right|=\min _{z \in S}|z|$. તો $\left|\sqrt{2} z_1-z_2\right|^2$....................
જો $z = x + iy\, (x, y \in R,\, x \neq \, -1/2)$ , હોય તો $z$ ની કેટલી કિમતો માટે ${\left| z \right|^n}\, = \,{z^2}{\left| z \right|^{n - 2}}\, + \,z{\left| z \right|^{n - 2}}\, + \,1\,.\,\left( {n \in N,n > 1} \right)$ થાય
$\frac{{1 + i}}{{1 - i}}$ ના કોણાંક અને માનાંક મેળવો.
$|z + i|\, = \,|z - i|$ થવા માટે $z$ એ . . . ... થાય.
અહી $a \neq b$ એ બે શૂન્યતરવાસ્તવિક સંખ્યા છે . તો ગણ $X =\left\{ z \in C : \operatorname{Re}\left(a z^2+ bz \right)= a \text { and }\operatorname{Re}\left(b z^2+ az \right)= b \right\}$ ની સભ્ય સંખ્યા મેળવો.