$x $ के वास्तविक मानों का समुच्चय, जो कि असमिका ${\log _{1/2}}({x^2} - 6x + 12) \ge - 2x$ को संतुष्ट करता है, होगा
$\left( { - \infty ,\,2} \right]$
$[2,\,4]$
$\left[ {4, + \infty } \right)$
इनमें से कोई नहीं
${81^{(1/{{\log }_5}3)}} + {27^{{{\log }_{_9}}36}} + {3^{4/{{\log }_{_7}}9}}$ का मान है
समीकरण $x ^{\left(16\left(\log _5 x \right)^3-68 \log _5 x \right)}=5^{-16}$
को संतुष्ट करने वाले $x$ के सभी धनात्मक वास्तविक मानों (positive real values) का गुणनफल (product)
. . . . . है।
${\log _4}2 - {\log _8}2 + {\log _{16}}2 - ....\infty $ तक, का मान है
यदि $1$ से भिन्न तीन विभिन्न धनात्मक संख्यायें $a, b, c $ इस प्रकार हो कि $[{\log _b}a{\log _c}a - {\log _a}a] + [{\log _a}b{\log _c}b - {\log _b}b]$$ + [{\log _a}c{\log _b}c - {\log _c}c] = 0,$ तब $abc =$
$y = {\log _a}x$ को परिभाषित करने के लिए $ ‘a’$ होगा