यदि ${\log _{10}}3 = 0.477$, तो ${3^{40}}$ में अंको की संख्या है
$18$
$19$
$20$
$21$
मान लीजिए कि $a, b, x$ धनात्मक वास्तविक संख्याएँ हैं और $a \neq 1, x \neq 1$ एवं $a b \neq 1$ यदि $\log _a b=10$ तथा $\frac{\log _a x \log _x\left(\frac{b}{a}\right)}{\log _x b \log _{a b} x}=\frac{p}{q},$ यहाँ $p$ और $q$ धनात्मक पूर्णांक हैं एवं असहभाज्य (co-prime) हैं, तब $p+q$ का क्या मान होगा ?
${(0.05)^{{{\log }_{_{\sqrt {20} }}}(0.1 + 0.01 + 0.001 + ......)}}$ का मान है
$\log _{\left(x+\frac{7}{2}\right)}\left(\frac{x-7}{2 x-3}\right)^2 \geq 0$ के पूर्णांक हलों $x$ की संख्या है
${\log _3}4{\log _4}5{\log _5}6{\log _6}7{\log _7}8{\log _8}9$ का मान है [
समीकरण $x ^{\left(16\left(\log _5 x \right)^3-68 \log _5 x \right)}=5^{-16}$
को संतुष्ट करने वाले $x$ के सभी धनात्मक वास्तविक मानों (positive real values) का गुणनफल (product)
. . . . . है।