मान लीजिए कि $a, b, x$ धनात्मक वास्तविक संख्याएँ हैं और $a \neq 1, x \neq 1$ एवं $a b \neq 1$ यदि $\log _a b=10$ तथा $\frac{\log _a x \log _x\left(\frac{b}{a}\right)}{\log _x b \log _{a b} x}=\frac{p}{q},$ यहाँ $p$ और $q$ धनात्मक पूर्णांक हैं एवं असहभाज्य (co-prime) हैं, तब $p+q$ का क्या मान होगा ?

  • [KVPY 2021]
  • A

    $9$

  • B

    $99$

  • C

    $109$

  • D

    $199$

Similar Questions

संख्या $15^2 \times 5^{18}$ को यदि आधार $(base)$ $10$ में लिखा जाए, तब इसके अंकों का योग $S$ है। तब

  • [KVPY 2018]

यदि $n = 1983\,!$ हो, तब व्यंजक $\frac{1}{{{{\log }_2}n}} + \frac{1}{{{{\log }_3}n}} + \frac{1}{{{{\log }_4}n}} + ....... + \frac{1}{{{{\log }_{1983}}n}}$का मान होगा

माना कि $a=3 \sqrt{2}$ और $b=\frac{1}{5^{1 / 6} \sqrt{6}}$ हैं। यदि $x, y \in R$ इस प्रकार हैं कि

$3 x+2 y=\log _a(18)^{\frac{5}{4}} \quad \text { और }$

$2 x-y=\log _b(\sqrt{1080}),$

तब $4 x+5 y$ बराबर. . . . .है।

  • [IIT 2024]

माना $\sum_{n=0}^{\infty} \frac{n^3((2 n) !)+(2 n-1)(n !)}{(n !)((2 n) !)}=a e+\frac{b}{e}+c\ $है, जहाँ $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathbb{Z}$ तथा $\mathrm{e}=\sum_{\mathrm{n}=0}^{\infty} \frac{1}{\mathrm{n} !}$ है तो $\mathrm{a}^2-\mathrm{b}+\mathrm{c}$ बराबर है

  • [JEE MAIN 2023]

$7\log \left( {\frac{{16}}{{15}}} \right) + 5\log \left( {\frac{{25}}{{24}}} \right) + 3\log \left( {\frac{{81}}{{80}}} \right)$ =