${\log _3}4{\log _4}5{\log _5}6{\log _6}7{\log _7}8{\log _8}9$ का मान है [
$1$
$2$
$3$
$4$
माना कि $a=3 \sqrt{2}$ और $b=\frac{1}{5^{1 / 6} \sqrt{6}}$ हैं। यदि $x, y \in R$ इस प्रकार हैं कि
$3 x+2 y=\log _a(18)^{\frac{5}{4}} \quad \text { और }$
$2 x-y=\log _b(\sqrt{1080}),$
तब $4 x+5 y$ बराबर. . . . .है।
मान लें कि $n$ सबसे छोटा धन पूर्णांक इस प्रकार है कि $1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n} \geq 4$ निम्नांकित में कौन सा कथन सही है ?
संख्या $15^2 \times 5^{18}$ को यदि आधार $(base)$ $10$ में लिखा जाए, तब इसके अंकों का योग $S$ है। तब
पद $6+\log _{\frac{3}{2}}\left(\frac{1}{3 \sqrt{2}} \sqrt{4-\frac{1}{3 \sqrt{2}} \sqrt{4-\frac{1}{3 \sqrt{2}} \sqrt{4-\frac{1}{3 \sqrt{2}}} \ldots}}\right)$ का मान है।
${\log _2}(x + 5) = 6 - x$ के हलों की संख्या है