જો $2a + 3b + 6c = 0 $ હોય, તો સમીકરણ $ax^2 + bx + c = 0$  નું ઓછામાં ઓછું એક બીજ કયા અંતરાલમાં હોય ?

  • A

    $(0, 1)$

  • B

    $(1, 2)$

  • C

    $(2, 3)$

  • D

    એકપણ નહિ.

Similar Questions

વિધેયો $f(x)$ અને $g(x)$ છે કે જેથી $f(x) + \int\limits_0^x {g(t)dt = 2\,\sin \,x\, - \,\frac{\pi }{2}} $ અને  $f'(x).g (x) = cos^2\,x$ હોય તો અંતરાલ  $(0,3 \pi$) પર સમીકરણ $f(x) + g(x) = 0$ ના ઉકેલની સંખ્યા મેળવો.

અહી $\mathrm{f}$ એ અંતરાલ $[0,2]$ પર સતત છે અને અંતરાલ $(0,2)$ પર દ્રીતીય વિકલનીય છે . જો  $\mathrm{f}(0)=0, \mathrm{f}(1)=1$ અને $f(2)=2$ હોય તો  . .. .  .

  • [JEE MAIN 2021]

વિધેય $f(x) = {x^2} - 4$ એ . . . . અંતરાલમાં રોલના પ્રમેય નું પાલન કરે છે .

જો $f(x)$ એ $[0, 2]$ માં મધ્યક માન પ્રમેયનું પાલન કરે છે . જો $f (0) = 0$ અને દરેક $x$ કે જે $[0, 2]$ માટે $|f'(x)|\, \le {1 \over 2}$ તો . . . .

$\left[ {\frac{\pi }{6},\,\frac{{5\pi }}{6}} \right]\,\,$  અતરલમાં વિધેય ${f}{\text{(x)  =  logsinx }}$ માટે લાંગ્રાજના પ્રમેયના $c$ નું મૂલ્ય કેટલું થાય  $?$