જો $f(x)$ એ $[0, 2]$ માં મધ્યક માન પ્રમેયનું પાલન કરે છે . જો $f (0) = 0$ અને દરેક $x$ કે જે $[0, 2]$ માટે $|f'(x)|\, \le {1 \over 2}$ તો . . . .
$f(x) \le 2$
$|f(x)| \le 1$
$f(x) = 2x$
$[0, 2]$ માં ઓછામાં ઓછા એક $x$ માટે $f(x) = 3$ થાય.
ધારો કે બધા $x $ માટે $ f $ વિકલનીય છે. જો $x \in [1, 6]$ માટે $f (1) = -2$ અને $ f'(x) \geq 2$ હોય, તો......
જો $2a + 3b + 6c = 0$, $a, b, c \in R$ હોય, તો સમીકરણ .......નું ઓછામાં ઓછું એક $0$ બીજ અને $1$ વચ્ચે છે.
જો $f$ એ વિકલીનીય વિધેય હોય કે જેથી $f(2x + 1) = f(1 -2x)$ $\forall \,\,x \in R$ તથા $f(2) = f(5) = f(10)$ આપેેેલ હોય તો સમીકરણ $f'(x) = 0$ જ્યા $x \in \left( { - 5,10} \right)$ ના બિજો ઓછામાઓછા કેટલા મળે ?
અંતરાલ $[-2, 2]$ માં, વક્ર $y = {x^3}$ પરના બિંદુનો $x-$ યામ મેળવો કે જેનો સ્પર્શકનો ઢાળએ અંતરાલ $[-2, 2]$ માં મધ્યક પ્રમેય મુજબ મેળવી શકાય છે.
$a = 1$ અને $b = 4$ લઈ વિધેય $f(x)=x^{2}-4 x-3$ માટે $[a, b]$ પર મધ્યકમાન પ્રમેય ચકાસો.