$\left[ {\frac{\pi }{6},\,\frac{{5\pi }}{6}} \right]\,\,$ અતરલમાં વિધેય ${f}{\text{(x) = logsinx }}$ માટે લાંગ્રાજના પ્રમેયના $c$ નું મૂલ્ય કેટલું થાય $?$
$\frac{\pi }{4}$
$\frac{\pi }{2}$
$\frac{{2\pi }}{3}$
એકપણ નહિ
$[2, 4]$ પર વ્યાખ્યાયિત વિધેય $f(x)=x^{2}$ માટે $[2, 4]$ પર મધ્યકમાન પ્રમેય ચકાસો.
ધારો કે વિધેય $f$ એ $[\mathrm{a}, \mathrm{b}]$ પર સતત અને $(a, b) $ પર દ્રીતીય વિકલનીય છે. જો દરેક $x \in(a, b)$ ; $f^{\prime}(\mathrm{x})>0$ અને $f^{\prime \prime}(\mathrm{x})<0,$ હોય તો કોઈક $\mathrm{c} \in(\mathrm{a}, \mathrm{b})$ ; $\frac{f(\mathrm{c})-f(\mathrm{a})}{f(\mathrm{b})-f(\mathrm{c})}$ $>$
વિધેય $f(x) = {e^{ - 2x}}sin 2x$ એ $\left( {0,{\pi \over 2}} \right)$ માં આપલે છે. વાસ્તવિક સંખ્યા $c \in \left( {0,{\pi \over 2}} \right)\,,$ મેળવો કે જેથી $f'\,(c) = 0$ માટે રોલના પ્રમેયનું પાલન કરે છે.
જો $f(x) = \sqrt {x - 1} + \sqrt {x + 24 - 10\sqrt {x - 1} ;} $ $1 < x < 26$ એ વાસ્તવિક વિધેય છે તો $f\,'(x)$ એ $1 < x < 26$ માટે મેળવો.
મધ્યકમાન પ્રમેયમાં $f(b) - f(a) = (b - a)f'(c)$ આપેલ છે. જો $a = 4 , b = 9$ અને $f(x) = \sqrt x $ તો $ c$ ની કિમંત મેળવો.