ઉપવલય $4x^2 + 9y^2 = 1$ ઉપર કયા બિંદુ આગળના સ્પર્શકો $8x = 9y$ ને સમાંતર હોય ?
$\left( {\frac{2}{5},\,\,\frac{1}{5}} \right)$
$\left( { - \frac{2}{5},\,\,\frac{1}{5}} \right)$ અથવા $\,\left( {\frac{2}{5},\,\, - \frac{1}{5}} \right)\,\,$
$\left( { - \frac{2}{5},\,\,\frac{{ - 1}}{5}} \right)$
$\left( {\frac{{ - 3}}{5},\,\,\frac{{ - 2}}{5}} \right)$
જો ઉપવલય $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{4 a^{2}}=1$ ના સ્પર્શક અને યામક્ષો દ્વારા બનતા ત્રિકોણનું ન્યૂનતમ ક્ષેત્રફળ $kab$ હોય તો $\mathrm{k}$ ની કિમંત મેળવો.
બિંદુઓ $(4, 3)$ અને $(- 1,4)$ માંથી પસાર થતા હોય તથા જેનો પ્રધાન અક્ષ $x-$ અક્ષ હોય તેવા ઉપવલયનું સમીકરણ મેળવો.
ઉપવલયનું નાભિકેન્દ્ર ઉગમબિંદુ આગળ છે. રેખા $x = 4$ અને નિયામિકા છે અને ઉત્કેન્દ્રતા $1/2$ છે તો પ્રધાન અક્ષની લંબાઈ મેળવો.
રેખા $x = at^2 $ એ ઉપવલય $\frac{{{x^2}}}{{{a^2}}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1$ ને વાસ્તવિક બિંદઓમાં ક્યારે મળે ?
ઉપવલય $\frac{{{x^2}}}{{{a^2}}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1$ પર બે બિંદુઓ ${\theta _1}\,$ અને ${\theta _2}$ ની જીવા . . . બિંદુ આગળ કાટખૂણે બનાવે છે. (જો ${\text{tan}}\,\,{\theta _{\text{1}}}\,\tan {\theta _2}\,\, = \,\, - \frac{{{a^2}}}{{{b^2}}}$ )