વર્તૂળો $x^2 + y^2+ 2x - 2y + 1 = 0$ અને $x^2 + y^2- 2x - 2y + 1 = 0$ એકબીજાને ક્યાં આગળ સ્પર્શેં ?

  • A

    $(0, 1)$ આગળ બહારથી

  • B

    $(0, 1)$ આગળ અંદરથી

  • C

    $(1, 0)$ આગળ બહારથી

  • D

    $(1, 0)$ આગળ અંદરથી

Similar Questions

વર્તૂળો $x^2 + y^2 + 8x - 2y - 9 = 0$ અને $x^2+ y^2 -2x + 8y - 7 = 0$ નો છેદ કોણ : ............ $^o$

બિંદુઓ $(0, 0), (1, 0)$ માંથી પસાર થતા અને વર્તૂળ $x^2 + y^2 = 9$ ને સ્પર્શતા વર્તૂળનું કેન્દ્ર ....

જો બે વર્તૂળો $ 2x^2 + 2y^2 -3x + 6y + k = 0$  અને  $x^2 + y^2 - 4x + 10y + 16 = 0$  લંબરૂપે છેદે, તો $ k$  નું મૂલ્ય....

એક વર્તુળ એ વર્તુળો $x^{2}+y^{2}-6 x=0$ અને $x^{2}+y^{2}-4 y=0$ ના છેદબિંદુઓ માંથી પસાર થાય તથા તેનું કેન્દ્ર રેખા $2 x-3 y+12=0$ આવેલ હોય તો તે વર્તુળ ........ બિંદુ માંથી પસાર થશે 

  • [JEE MAIN 2020]

જે વર્તૂળની ત્રિજ્યા $3$ હોય અને જે $x^{2} + y^{2} - 4x - 6y - 12 = 0 $ વર્તૂળને બિંદુ $(-1, -1)$ આગળ અંદરથી સ્પર્શેં તેવા વર્તૂળનું સમીકરણ શોધો.