બિંદુઓ $(0, 0), (1, 0)$ માંથી પસાર થતા અને વર્તૂળ $x^2 + y^2 = 9$ ને સ્પર્શતા વર્તૂળનું કેન્દ્ર ....
$(3/2, 1/2)$
$(1/2, 3/2)$
$(1/2, 1/2)$
$\left( {1/2\,\,, \pm \,\,\sqrt 2 } \right)$
વર્તૂળ દ્વારા રેખા પર બનાવેલ અંત:ખંડ $AB$ હોય તો $AB$ જેનો વ્યાસ હોય તેવા વર્તૂળનું સમીકરણ મેળવો.
ઉગમબિંદુમાંથી પસાર થતું, રેખા $x + y = 4$ પર કેન્દ્ર ધરાવતું અને વર્તૂળ $x^2 + y^2 - 4x + 2y + 4 = 0$ ને લંબરૂપે છેદતા વર્તૂળનું સમીકરણ .....
બે વર્તૂળો $x^2 + y^2 - x + 1 = 0 $ અને $ 3 (x^2 + y^2) + y - 1 = 0 $ ની મૂલાક્ષ (Radical axes) નું સમીકરણ મેળવો.
વર્તૂળો $x^2 + y^2 - 2x - 4y = 0$ અને $x^2 + y^2 - 8y - 4 = 0$
જો વક્રો $x^{2}-6 x+y^{2}+8=0$ અને $\mathrm{x}^{2}-8 \mathrm{y}+\mathrm{y}^{2}+16-\mathrm{k}=0,(\mathrm{k}>0)$ એકબીજાના એક બિંદુમાં સ્પર્શે છે તો $\mathrm{k}$ ની મહતમ કિમંત મેળવો.