ચતુષ્કોણની બાજુઓ $AB, BC, CD$ અને $DA$ અનુક્રમે $x + 2y = 3, x = 1, x - 3y = 4, 5x + y + 12 = 0$ સમીકરણો ધરાવે, તો વિકર્ણ $AC$ અને $BD$ વચ્ચેનો ખૂણો .....$^o$ શોધો.

  • A

    $60$

  • B

    $45$

  • C

    $90$

  • D

    એકપણ નહિ

Similar Questions

વિધાન: જો ત્રિકોણનું મધ્યકેન્દ્ર અને પરિકેન્દ્ર તેના લંબકેન્દ્ર તરીકે ઓળખાય તો તે શોધી શકાય છે.કારણ : ત્રિકોણનું મધ્યકેન્દ્ર, લંબકેન્દ્ર અને પરિકેન્દ્ર સમરેખ હોય.

અહી ત્રિકોણ કે જેના શિરોબિંદુ  $A ( a , 3), B ( b , 5)$ અને $C ( a , b ), ab >0$  હોય તેનું પરિકેન્દ્ર  $P (1,1)$ છે. જો રેખા $AP$ એ રેખા $BC$ ને બિંદુ $Q \left( k _{1}, k _{2}\right)$ માં છેદે છે તો $k _{1}+ k _{2}$ ની કિમંત મેળવો.

  • [JEE MAIN 2022]

$A (a, 0)$ અને $B (-a, 0)$ એ $ \Delta ABC$ ના બે નિયત બિંદુ છે. જો તેનું શિરોબિંદુ $C$ એવી રીતે ખસે કે જેથી $cot\, A + cot\, B = \lambda$ થાય. જ્યાં અચળ છે. તો બિંદુ $C$ નો બિંદુપથ શું થાય ?

$2x - 3y = 4$ ને સમાંતર રેખા કે જે અક્ષો સાથે $12$ ચોરસ એકમ ક્ષેત્રફળનું ત્રિકોણ બનાવે તે રેખાનું સમીકરણ

ત્રિકોણ $PQS$ અને $PQR$ ના ક્ષેત્રનો ગુણોત્તર . . . . .