વિધાન: જો ત્રિકોણનું મધ્યકેન્દ્ર અને પરિકેન્દ્ર તેના લંબકેન્દ્ર તરીકે ઓળખાય તો તે શોધી શકાય છે.કારણ : ત્રિકોણનું મધ્યકેન્દ્ર, લંબકેન્દ્ર અને પરિકેન્દ્ર સમરેખ હોય.
$A$ અને $R$ બંને સ્વતંત્ર રીતે સાચા છે અને $R$ એ $A$ માટે સાચી સમજૂતી છે.
$A$ અને $R$ બંને સ્વતંત્ર રીતે સાચા છે અને $R$ એ $A$ માટે સાચી સમજૂતી નથી.
$A$ સાચું છે પરંતુ $R$ ખોટું છે.
$A$ ખોટું છે પરંતુ $R$ સાચું છે.
ધારોકે સમાંતરબાજુ ચતુષ્કોણ $ABCD$ ની બે સંલગ્ન બાજુઓના સમીકરણો $2 x-3 y=-23$ અને $5 x+4 y=23$ છે.જો તેના એક વિકર્ણ $AC$નું સમીકરણ $3 x+7 y=23$ હોય અને બીજા વિકર્ણ થી $A$ નું અંતર $d$ હોય, તો $50 d ^2=........$
પાયથાગોરસના પ્રમેયનો ઉપયોગ કર્યા વગર બતાવો કે $(4, 4), (3, 5)$ અને $(-1, -1) $ કાટકોણ ત્રિકોણનાં શિરોબિંદુઓ છે.
ચષ્તુકોણના શિરોબિંદુઓ $(2, -1), (0, 2), (2, 3)$ અને $(4, 0)$ હોય તો તેના વિકર્ણો વચ્ચેનો ખૂણો મેળવો.
ચોરસની એક બાજુએ $x-$ અક્ષની ઉપર આવેલ છે અને ચોરસનું એક શિરોબિંદુ ઊગમબિંદુ છે.જો ઊગમબિંદુમાંથી પસાર થતી બાજુએ ધન $x-$ અક્ષ સાથે બનાવેલ ખૂણો $\alpha \,\,(0\; < \;\alpha \; < \;\; \frac{\pi }{4}))$ તો ઊગમબિંદુમાંથી પસાર ન થતા વિર્કણનું સમીકરણ મેળવો. (ચોરચની બાજુની લંબાઈ $a$ છે )
લંબચોરચની એક બાજુનું સમીકરણ $4x + 7y + 5 = 0$ છે . જો બે શિરોબિંદુઓ $(-3, 1)$ અને $(1, 1)$ હોય તો બાકીની ત્રણ બાજુઓ મેળવો.