અહી ત્રિકોણ કે જેના શિરોબિંદુ $A ( a , 3), B ( b , 5)$ અને $C ( a , b ), ab >0$ હોય તેનું પરિકેન્દ્ર $P (1,1)$ છે. જો રેખા $AP$ એ રેખા $BC$ ને બિંદુ $Q \left( k _{1}, k _{2}\right)$ માં છેદે છે તો $k _{1}+ k _{2}$ ની કિમંત મેળવો.
$2$
$\frac{4}{7}$
$\frac{2}{7}$
$4$
જો રેખાઓ $x-y+1=0$, $x-2 y+3=0$ અને $2 x-5 y+11=0$ નાં છેદબિંદુઓ ત્રિકોણ $A B C$ ની બાજુનાં મધ્યબિંદુઓ છે તો ત્રિકોણ $\mathrm{ABC}$ નું ક્ષેત્રફળ મેળવો.
રેખાઓ $xy = 0$ અને $x + y = 1$દ્વારા બનતા ત્રિકોણનું લંબકેન્દ્ર મેળવો.
યામ-સમતલમાં $(-4,5),(0,7) (5,-5)$ અને $(-4-2)$ શિરોબિંદુઓવાળો ચતુષ્કોણ દોરો અને તેનું ક્ષેત્રફળ શોધો.
ધારો કે $PS$ એ શિરોબિંદુઓ $P(2,2) , Q(6,-1) $ અને $R(7,3) $ વાળા ત્રિકોણની મધ્યગા છે. $(1,-1) $ માંથી પસાર થતી તથા $PS $ ને સંમાતર હોય તેવી રેખાનું સમીકરણ . . . . .. . છે.
રેખાઓ $y-x = 0, x +y = 0$ અને $x-k= 0$ થી બનતા ત્રિકોણનું ક્ષેત્રફળ શોધો.