$31, 32, 33, ...... 47 $ સંખ્યાઓનું પ્રમાણિત વિચલન કેટલું થાય ?
$2\sqrt 6 $
$4\sqrt 3 $
$\sqrt {\frac{{{{47}^2}\, - \,\,1}}{{12}}} $
આપેલ પૈકી એક પણ નહિં
$3$ ખામી વાળી $12$ ચીજેના એક જથ્થામાથી યાદસ્છિક રીતે $5$ ચીજોનો એક નિદર્શ લેવામાં આવે છે. ધારોકે યાદચ્છિક ચલ $X$ એ નિર્દશ ની ખામી વાળી ચીજોની સંખ્યા દર્શાવે છે. ધારોકે નિર્દશમાં ની ચીજો પુરવણીરહિત એક પછી એક લેવામાં આવે છે. જે $X$ નું વિચરણ $\frac{m}{n}$ હોય, તો જ્યાં ગુ.સા.આ. $(m,\left.n\right)=1$, તો $n-m=$ ..............
જો સંખ્યા $-1, 0, 1, k$ નો પ્રમાણિત વિચલન $\sqrt 5$ હોય તો $k$ = ............... ( જ્યાં $k > 0,$)
$15$ સંખ્યાઓના એક ગણના મધ્યક અને વિચરણ અનુક્રમે $12$ અને $14$ છે.$15$ સંખ્યાઓના અન્ય એક ગણના મધ્યક અને વિચરણ અનુક્રમે $14$ અને $\sigma^2$ છે.બંને ગણની તમામ $30$ સંખ્યાઓનું વિયરણ જો $13$ હોય, તો $\sigma^2=........$
જો $\sum\limits_{i\, = \,1}^{18} {({x_i}\, - \,\,8)\,\, = \,\,9} $ અને $\,\sum\limits_{i\, = \,1}^{18} {{{({x_i}\, - \,\,8)}^2}\, = \,\,45} ,\,$ હોય, તો $\,{{\text{x}}_{\text{1}}},\,\,{x_2},\,........\,\,{x_{18}}$ નું પ્રમાણિત વિચલન શોધો .
આપેલ આવૃત્તિ વિતરણ માટે મધ્યક અને વિચરણ શોધો.
વર્ગ |
$0-30$ | $30-60$ | $60-90$ | $90-120$ | $120-150$ | $50-180$ | $180-210$ |
આવૃત્તિ |
$2$ | $3$ | $5$ | $10$ | $3$ | $5$ | $2$ |