$\left| {\,\begin{array}{*{20}{c}}x&4&{y + z}\\y&4&{z + x}\\z&4&{x + y}\end{array}\,} \right| = $
$4$
$x + y + z$
$xyz$
$0$
माना समीकरण निकाय $x+2 y+3 z=5$, $2 \mathrm{x}+3 \mathrm{y}+\mathrm{z}=9,4 \mathrm{x}+3 \mathrm{y}+\lambda \mathrm{z}=\mu$ के अनंत हल है। तो $\lambda+2 \mu$ बराबर है :
सारणिकों का मान ज्ञात कीजिए:
$\left|\begin{array}{ccc}0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0\end{array}\right|$
सारणिक $\left| {\,\begin{array}{*{20}{c}}{4 + {x^2}}&{ - 6}&{ - 2}\\{ - 6}&{9 + {x^2}}&3\\{ - 2}&3&{1 + {x^2}}\end{array}\,} \right|$ निम्न के द्वारा विभाज्य नहीं है
यदि रैखीक समीकरण निकाय
$2 x+y+z=5$
$x-y+z=3$
$x+y+a z=b$ का कोई हल नहीं है, तो
यदि $f(\theta)=\left|\begin{array}{ccc}1 & \cos \theta & 1 \\ -\sin \theta & 1 & -\cos \theta \\ -1 & \sin \theta & 1\end{array}\right|$ है, तथा $A$ तथा $B$ क्रमशः $f(\theta)$ के अधिकतम तथा न्यूनतम मान हैं, तो $( A , B )$ बराबर है