$\left| {\,\begin{array}{*{20}{c}}x&4&{y + z}\\y&4&{z + x}\\z&4&{x + y}\end{array}\,} \right| = $
$4$
$x + y + z$
$xyz$
$0$
$\left| {\,\begin{array}{*{20}{c}}1&5&\pi \\{{{\log }_e}e}&5&{\sqrt 5 }\\{{{\log }_{10}}10}&5&e\end{array}\,} \right| = $
$'K'$ के मानो की संख्या, जिनके लिए समीकरण निकाय
$(k+1) x+8 y=4 k$
$k x+(k+3) y=3 k-1$
के पास कोई हल नहीं है, है
निम्न में से किस क्रमित युग्म $(\mu, \delta)$ के लिए रैखिक समीकरण निकाय $x+2 y+3 z=1$, $3 x+4 y+5 z=\mu$, $4 x+4 y+4 z=\delta$ असंगत (inconsistent) है?
माना$\mathrm{A}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & \beta & \alpha\end{array}\right]$ तथा $|2 \mathrm{~A}|^3=2^{21}$ है, जहाँ $\alpha, \beta \in \mathrm{Z}$ है। तो $\alpha$ का एक मान है
$\left| {\,\begin{array}{*{20}{c}}1&1&1\\1&{{\omega ^2}}&\omega \\1&\omega &{{\omega ^2}}\end{array}\,} \right| = $