$\left| {\,\begin{array}{*{20}{c}}0&{p - q}&{p - r}\\{q - p}&0&{q - r}\\{r - p}&{r - q}&0\end{array}\,} \right| = $
$0$
$(p - q)(q - r)(r - p)$
$pqr$
$3pqr$
$\lambda $ ની કેટલી વાસ્તવિક કિમંતો માટે સમીકરણો $2x + 4y - \lambda z = 0$ ;$4x + \lambda y + 2z = 0$ ; $\lambda x + 2y+ 2z = 0$ ને અનંત ઉકેલ મળે.
નિશ્ચાયકનો ઉપયોગ કરી $\mathrm{A}(1, 3)$ અને $\mathrm{B}(0, 0)$ ને જોડતી રેખાનું સમીકરણ શોધો અને જો ત્રિકોણ $\mathrm{ABD}$ નું ક્ષેત્રફળ $3$ ચોરસ એકમ થાય તેવું બિંદુ $\mathrm{D}(\mathrm{k}, 0)$ હોય, તો $\mathrm{k}$ શોધો.
$A,B,C$ અને $P,Q,R$ ની દરેક કિમંત માટે , $\left| {\,\begin{array}{*{20}{c}}{\cos (A - P)}&{\cos (A - Q)}&{\cos (A - R)}\\{\cos (B - P)}&{\cos (B - Q)}&{\cos (B - R)}\\{\cos (C - P)}&{\cos (C - Q)}&{\cos (C - R)}\end{array}\,} \right| =. . . $
જો $n \ne 3k$ અને 1, $\omega ,{\omega ^2}$ એકના ઘનમૂળ હોય , તો $\Delta = \left| {\,\begin{array}{*{20}{c}}1&{{\omega ^n}}&{{\omega ^{2n}}}\\{{\omega ^{2n}}}&1&{{\omega ^n}}\\{{\omega ^n}}&{{\omega ^{2n}}}&1\end{array}\,} \right|$ ની કિમત મેળવો.
જો $A=\left[\begin{array}{lll}1 & 1 & -2 \\ 2 & 1 & -3 \\ 5 & 4 & -9\end{array}\right]$ હોય, તો $|A|$ શોધો.