$\left| {\,\begin{array}{*{20}{c}}0&{p - q}&{p - r}\\{q - p}&0&{q - r}\\{r - p}&{r - q}&0\end{array}\,} \right| = $
$0$
$(p - q)(q - r)(r - p)$
$pqr$
$3pqr$
Consider the system of linear equations
$-x+y+2 z=0$
$3 x-a y+5 z=1$
$2 x-2 y-a z=7$
Let $S_{1}$ be the set of all $\mathrm{a} \in {R}$ for which the system is inconsistent and $S_{2}$ be the set of all $a \in {R}$ for which the system has infinitely many solutions. If $n\left(S_{1}\right)$ and $n\left(S_{2}\right)$ denote the number of elements in $S_{1}$ and $\mathrm{S}_{2}$ respectively, then
$\left| {\,\begin{array}{*{20}{c}}{{a_1}}&{m{a_1}}&{{b_1}}\\{{a_2}}&{m{a_2}}&{{b_2}}\\{{a_3}}&{m{a_3}}&{{b_3}}\end{array}\,} \right| = $
The value of $k$ for which the set of equations $x + ky + 3z = 0,$ $3x + ky - 2z = 0,$ $2x + 3y - 4z = 0$ has a non trivial solution over the set of rationals is
Consider the system of linear equations
$x+y+z=5, x+2 y+\lambda^2 z=9$
$x+3 y+\lambda z=\mu$, where $\lambda, \mu \in R$. Then, which of the following statement is NOT correct?
If $B$ is a $3 \times 3$ matrix such that $B^2 = 0$, then det. $[( I+ B)^{50} -50B]$ is equal to