$\left| {\,\begin{array}{*{20}{c}}{b + c}&{a - b}&a\\{c + a}&{b - c}&b\\{a + b}&{c - a}&c\end{array}\,} \right| = $

  • A

    ${a^3} + {b^3} + {c^3} - 3abc$

  • B

    $3abc - {a^3} - {b^3} - {c^3}$

  • C

    ${a^3} + {b^3} + {c^3} - {a^2}b - {b^2}c - {c^2}a$

  • D

    $(a+b+c)(a^2+b^2+c^2+ab+bc+ca)$

Similar Questions

$\left| {\,\begin{array}{*{20}{c}}{a + b}&{b + c}&{c + a}\\{b + c}&{c + a}&{a + b}\\{c + a}&{a + b}&{b + c}\end{array}\,} \right| = K\,\,\left| {\,\begin{array}{*{20}{c}}a&b&c\\b&c&a\\c&a&b\end{array}\,} \right|\,,$ તો $K = $

જો ${a_1},{a_2},{a_3},........,{a_n},......$ એ સમગુણોતર શ્રેણીમાં હોય અને દરેક $i$ માટે ${a_i} > 0$  તો $\Delta = \left| {\,\begin{array}{*{20}{c}}{\log {a_n}}&{\log {a_{n + 2}}}&{\log {a_{n + 4}}}\\{\log {a_{n + 6}}}&{\log {a_{n + 8}}}&{\log {a_{n + 10}}}\\{\log {a_{n + 12}}}&{\log {a_{n + 14}}}&{\log {a_{n + 16}}}\end{array}} \right|= . . . $

જો $A$, $B$ અને  $C$ ત્રિકોણના ખૂણા હોય તો નિશ્ચાયક 

$\left| {\begin{array}{*{20}{c}}
  { - 1 + \cos B}&{\cos C + \cos B}&{\cos B} \\ 
  {\cos C + \cos A}&{ - 1 + \cos A}&{\cos A} \\ 
  { - 1 + \cos B}&{ - 1 + \cos A}&{ - 1} 
\end{array}} \right|$ ની કિમંત મેળવો.

સાબિત કરો કે $\left|\begin{array}{ccc}a & b & c \\ a+2 x & b+2 y & c+2 z \\ x & y & z\end{array}\right|=0$

$\left|\begin{array}{ccc}\cos \alpha \cos \beta & \cos \alpha \operatorname{csin} \beta & -\sin \alpha \\ -\sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha\end{array}\right|$ નું મૂલ્ય શોધો.