$\left| {\begin{array}{*{20}{c}}0&a&{ - b}\\{ - a}&0&c\\b&{ - c}&0\end{array}} \right| = $

  • A

    $ - 2abc$

  • B

    $abc$

  • C

    $0$

  • D

    ${a^2} + {b^2} + {c^2}$

Similar Questions

સમીકરણ $\left| {\,\begin{array}{*{20}{c}}{a + x}&{a - x}&{a - x}\\{a - x}&{a + x}&{a - x}\\{a - x}&{a - x}&{a + x}\end{array}\,} \right| = 0$ નો ઉકેલ મેળવો.

જો $a \ne p,b \ne q,c \ne r$ અને $\left| {\,\begin{array}{*{20}{c}}p&b&c\\{p + a}&{q + b}&{2c}\\a&b&r\end{array}\,} \right|$ = $0,$  તો $\frac{p}{{p - a}} + \frac{q}{{q - b}} + \frac{r}{{r - c}} = $

જો રેખાઓ  $x + 2ay + a = 0, x + 3by + b = 0$ અને  $x + 4cy + c = 0$ એ સંગામી રેખાઓ હોય તો $a, b$ અને  $c$ એ  .. .. શ્રેણીમાં હોય .

જો સુરેખ સમીકરણો $x - 2y + kz = 1$ ; $2x + y + z = 2$ ;  $3x - y - kz = 3$ નો ઉકેલ  $(x, y, z) \ne 0$,  હોય તો  $(x, y)$ એ  . .  . .  રેખા પર આવેલ છે .

  • [JEE MAIN 2019]

જો $A = \left[ {\begin{array}{*{20}{c}}
1&{\sin \,\theta }&1\\
{ - \,\sin \,\theta }&1&{\sin \,\theta }\\
{ - 1}&{ - \,\sin \,\theta }&1
\end{array}} \right];$ તો દરેક $\theta \, \in \,\left( {\frac{{3\pi }}{4},\frac{{5\pi }}{4}} \right)$ માટે  $det (A)$ ની કિમંત મેળવો.

  • [JEE MAIN 2019]