$\left| {\begin{array}{*{20}{c}}0&a&{ - b}\\{ - a}&0&c\\b&{ - c}&0\end{array}} \right| = $
$ - 2abc$
$abc$
$0$
${a^2} + {b^2} + {c^2}$
સમીકરણ $\left| {\,\begin{array}{*{20}{c}}{a + x}&{a - x}&{a - x}\\{a - x}&{a + x}&{a - x}\\{a - x}&{a - x}&{a + x}\end{array}\,} \right| = 0$ નો ઉકેલ મેળવો.
જો $a \ne p,b \ne q,c \ne r$ અને $\left| {\,\begin{array}{*{20}{c}}p&b&c\\{p + a}&{q + b}&{2c}\\a&b&r\end{array}\,} \right|$ = $0,$ તો $\frac{p}{{p - a}} + \frac{q}{{q - b}} + \frac{r}{{r - c}} = $
જો રેખાઓ $x + 2ay + a = 0, x + 3by + b = 0$ અને $x + 4cy + c = 0$ એ સંગામી રેખાઓ હોય તો $a, b$ અને $c$ એ .. .. શ્રેણીમાં હોય .
જો સુરેખ સમીકરણો $x - 2y + kz = 1$ ; $2x + y + z = 2$ ; $3x - y - kz = 3$ નો ઉકેલ $(x, y, z) \ne 0$, હોય તો $(x, y)$ એ . . . . રેખા પર આવેલ છે .
જો $A = \left[ {\begin{array}{*{20}{c}}
1&{\sin \,\theta }&1\\
{ - \,\sin \,\theta }&1&{\sin \,\theta }\\
{ - 1}&{ - \,\sin \,\theta }&1
\end{array}} \right];$ તો દરેક $\theta \, \in \,\left( {\frac{{3\pi }}{4},\frac{{5\pi }}{4}} \right)$ માટે $det (A)$ ની કિમંત મેળવો.