જો ત્રિકોણનું ક્ષેત્રફળ $5$ એકમ હોય અને તેના બે શિરોબિંદુ $A(2, 1), B(3, -2)$ હોય અને ત્રીજું શિરોબિંદુ રેખા $y = x + 3$ પર આવેલ હોય તો ત્રીજા શિરોબિંદુના યામ મેળવો.
$\left( {\frac{7}{2},\frac{{13}}{2}} \right)$
$\left( {\frac{5}{2},\frac{{11}}{2}} \right)$
$-\left( {\frac{3}{2},\frac{{3}}{2}} \right)$
$(0, 0)$
સમીકરણની સંહતિ $x + 4y - z = 0,$ $3x - 4y - z = 0,\,x - 3y + z = 0$ ના ઉકેલની સંખ્યા મેળવો.
જો $a\, -\, 2b + c = 1$ હોય તો $\left| {\begin{array}{*{20}{c}}
{x + 1}&{x + 2}&{x + a} \\
{x + 2}&{x + 3}&{x + b} \\
{x + 3}&{x + 4}&{x + c}
\end{array}} \right|$ મેળવો.
અહી $[\lambda]$ એ મહતમ પૃણાંક વિધેય છે. $\lambda$ ની કિમંતો નો ગણ મેળવો કે જેથી સમીકરણ સંહતિ $x+y+z=4,3 x+2 y+5 z=3$ $9 x+4 y+(28+[\lambda]) z=[\lambda]$ નો ઉકેલ મળે.
જો સુરેખ રેખાઓની સહંતિ $x-2 y+z=-4 $ ; $2 x+\alpha y+3 z=5 $ ; $3 x-y+\beta z=3$ ને અનંત ઉકેલ હોય તો $12 \alpha+13 \beta$ ની કિમંત મેળવો.
$x$ નું મૂલ્ય શોધો : $\left|\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right|=\left|\begin{array}{ll}x & 3 \\ 2 x & 5\end{array}\right|$