$\left| {\begin{array}{*{20}{c}}0&a&{ - b}\\{ - a}&0&c\\b&{ - c}&0\end{array}} \right| = $
$ - 2abc$
$abc$
$0$
${a^2} + {b^2} + {c^2}$
Let $k_1$, $k_2$ be the maximum and minimum values of $k$ for which the system of equations given by
$x + ky = 1$ ; $kx + y = 2$; $x + y = k$ are consistent then $k_1^2 + k_2^2$ is equal to
A root of the equation $\left| {\,\begin{array}{*{20}{c}}{3 - x}&{ - 6}&3\\{ - 6}&{3 - x}&3\\3&3&{ - 6 - x}\end{array}\,} \right| = 0$ is
The existence of unique solution of the system of equations, $x+y+z=\beta $ , $5x-y+\alpha z=10$ , $2x+3y-z=6$ depends on
The value of $\lambda $ for which the system of equations $2x - y - z = 12,$ $x - 2y + z = - 4,$ $x + y + \lambda z = 4$ has no solution is
For the system of linear equations $a x+y+z=1$, $x+a y+z=1, x+y+a z=\beta$, which one of the following statements is NOT correct ?