If $\left| {\,\begin{array}{*{20}{c}}{{x^2} + x}&{x + 1}&{x - 2}\\{2{x^2} + 3x - 1}&{3x}&{3x - 3}\\{{x^2} + 2x + 3}&{2x - 1}&{2x - 1}\end{array}\,} \right| = Ax - 12$, then the value of $A $ is

  • [IIT 1982]
  • [JEE MAIN 2015]
  • A

    $12$

  • B

    $24$

  • C

    $-12$

  • D

    $-24$

Similar Questions

The remainder when the determinant $\left|\begin{array}{lll} 2014^{2014} & 2015^{2015} & 2016^{2016} \\ 2017^{2017} & 2018^{2018} & 2019^{2019} \\ 2020^{2020} & 2021^{2021} & 2022^{2022} \end{array}\right|$  is divided by $5$ is

  • [KVPY 2015]

The value of $\left| {\begin{array}{*{20}{c}}
{\sin \alpha }&{\cos \alpha }&{\sin \left( {\alpha  + \gamma } \right)}\\
{\sin \beta }&{\cos \beta }&{\sin \left( {\beta  + \gamma } \right)}\\
{\sin \delta }&{\cos \delta }&{\sin \left( {\gamma  + \delta } \right)}
\end{array}} \right|$ is 

For a real number $\alpha$, if the system

$\left[\begin{array}{ccc}1 & \alpha & \alpha^2 \\ \alpha & 1 & \alpha \\ \alpha^2 & \alpha & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$

of linear equations, has infinitely many solutions, then $1+\alpha+\alpha^2=$

  • [IIT 2017]

If the system of equations

$2 x+y-z=5$

$2 x-5 y+\lambda z=\mu$

$x+2 y-5 z=7$

has infinitely many solutions, then $(\lambda+\mu)^2+(\lambda-\mu)^2$ is equal to

  • [JEE MAIN 2023]

If for some $\alpha$ and $\beta$ in $R,$ the intersection of the following three planes  $x+4 y-2 z=1$ ; $x+7 y-5 z=\beta$ ; $x+5 y+\alpha z=5$ is a line in $\mathrm{R}^{3},$ then $\alpha+\beta$ is equal to

  • [JEE MAIN 2020]