If $\omega $ is an imaginary root of unity, then the value of $\left| {\,\begin{array}{*{20}{c}}a&{b{\omega ^2}}&{a\omega }\\{b\omega }&c&{b{\omega ^2}}\\{c{\omega ^2}}&{a\omega }&c\end{array}\,} \right|$ is
The roots of the equation $\left| {\,\begin{array}{*{20}{c}}0&x&{16}\\x&5&7\\0&9&x\end{array}\,} \right| = 0$ are
Evaluate the determinants
$\left|\begin{array}{rrr}3 & -1 & -2 \\ 0 & 0 & -1 \\ 3 & -5 & 0\end{array}\right|$
Let $\mathrm{A}$ be a square matrix of order $3 \times 3$ , then $|\mathrm{k A}|$ is equal to
The values of $\theta, \lambda$ for which the following equations $\sin \theta x - cos\theta y + (\lambda +1)z = 0$; $\cos\theta x + \sin\theta\, y - \lambda z = 0$;$ \lambda x +(\lambda + 1)y + \cos\theta z = 0$ have non trivial solution, is