$^{10}{C_1}{ + ^{10}}{C_3}{ + ^{10}}{C_5}{ + ^{10}}{C_7}{ + ^{10}}{C_9} = $

  • A

    ${2^9}$

  • B

    ${2^{10}}$

  • C

    ${2^{10}} - 1$

  • D

    એકપણ નહિ.

Similar Questions

ધારો કે પૂર્ણાકો $n$ અને $r$ માટે $\left(\begin{array}{l} n \\ r \end{array}\right)=\left\{\begin{array}{ll}{ }^{n} C _{ r }, & \text { if } n \geq r \geq 0 \\ 0, & \text { otherwise }\end{array}\right.$ છે. તો સરવાળા $\sum_{i=0}^{k}\left(\begin{array}{c}10 \\ i\end{array}\right)\left(\begin{array}{c}15 \\ k-i\end{array}\right)+\sum_{i=0}^{k+1}\left(\begin{array}{c}12 \\ i\end{array}\right)\left(\begin{array}{c}13 \\ k+1-i\end{array}\right)$ નું અસ્તિત્વ હોય, તેવી $k$ ની મહત્તમ કિમત ...... છે.

  • [JEE MAIN 2021]

જો ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + .......... + {C_n}{x^2},$ તો $C_0^2 + C_1^2 + C_2^2 + C_3^2 + ...... + C_n^2$ =

જો ${s_1} = \mathop \sum \limits_{j = 1}^{10} j\left( {j - 1} \right)\left( {\begin{array}{*{20}{c}}{10}\\j\end{array}} \right)\;,$$\;{s_2} = \mathop \sum \limits_{j = 1}^{10} j\;\left( {\begin{array}{*{20}{c}}{10}\\j\end{array}} \right)\;and,$${s_3} = \mathop \sum \limits_{j = 1}^{10} {j^2}\left( {\begin{array}{*{20}{c}}{10}\\j\end{array}} \right)\;,\;$

વિધાન $1$:${s_3} = 55 \times {2^9}$

વિધાન $2$: ${s_1} = 90 \times {2^8}\;$અને ${s_2} = 10 \times {2^8}$ 

  • [AIEEE 2010]

$\sum \limits_{ r =0}^{22}{ }^{22} C _{ r }{ }^{23} C _{ r }$ નું મૂલ્ય $.......$ છે.

  • [JEE MAIN 2023]

$(x - 1)$$\left( {x\, - \,\frac{1}{2}\,} \right)$$\left( {x\, - \,\frac{1}{{{2^2}}}\,} \right)$ .....$\left( {x\, - \,\frac{1}{{{2^{49}}}}\,} \right)$ ના વિસ્તરણમાં $x^{49}$ નો સહગુણક મેળવો