If ${\left( {{2 \over 3}} \right)^{x + 2}} = {\left( {{3 \over 2}} \right)^{2 - 2x}},$then $x =$
$1$
$3$
$4$
$0$
If ${{{{({2^{n + 1}})}^m}({2^{2n}}){2^n}} \over {{{({2^{m + 1}})}^n}{2^{2m}}}} = 1,$ then $m =$
$\sqrt {(3 + \sqrt 5 )} $ is equal to
If $x + \sqrt {({x^2} + 1)} = a,$ then $x =$
The square root of $\frac{(0.75)^3}{1-(0.75)}+\left[0.75+(0.75)^2+1\right]$ is
If ${a^x} = {(x + y + z)^y},{a^y} = {(x + y + z)^z}$, ${a^z} = {(x + y + z)^x},$ then