$R$ એ $\{11, 12, 13\}$ થી $\{8, 10, 12\}$ પર $y = x - 3$ દ્વારા વ્યાખ્યાયિત હોય તો ${R^{ - 1}}$ મેળવો.
$\{(8, 11), (10, 13)\}$
$\{(11, 18), (13, 10)\}$
$\{(10, 13), (8, 11)\}$
એકપણ નહીં.
જો $N$ એ $100$ કરતા વધારે પ્રાક્રુતિક સંખ્યાઓનો ગણ છે અને સંબંધ $R$ પર વ્યાખિયયિત છે :$R = \{(x,y) \in \,N × N :$ the numbers સંખ્યાઓ $x$ અને $y$ ને ઓછામા ઓછા બે વિભજ્યો છે.$\}.$ હોય તો $R$ એ ........
સાબિત કરો કે ગણ $\{1,2,3\}$ પર વ્યાખ્યાયિત સંબંધ $R =\{(1,1),\,(2,2),$ $(3,3)$, $(1,2)$, $(2,3)\}$ એ સ્વવાચક સંબંધ છે, પરંતુ તે સંમિત કે પરંપરિત સંબંધ નથી.
ગણ $A\, = \,\{ x\,:\,\left| x \right|\, < \,3,\,x\, \in Z\} $ કે જ્યાં $Z$ એ પૃણાંક સંખ્યા નો ગણ છે ,તેના પરનો સંબંધ $R= \{(x, y) : y = \left| x \right|, x \ne - 1\}$ આપેલ હોય તો $R$ ના ઘાતગણમાં રહેલ સભ્ય સંખ્યા મેળવો.
ગણ $A = \{1,2,3\}$ ધ્યાનમા લ્યો. $(1,2)$ & $(2,1)$ સમાવતા $A$ પરના સમિત સંબંધોની સંખ્યાઓ ............ થાય.
જો ગણ $A$ માં આઢ કરતાં નાની યુગ્મ પ્રાકૃતિક સંખ્યા છે અને $B$ માં સાત કરતાં નાની અવિભાજય સંખ્યા હોય તો $A $થી $B$ પરના સંબંધની સંખ્યા મેળવો