$R$ is a relation from $\{11, 12, 13\}$ to $\{8, 10, 12\}$ defined by $y = x - 3$. Then ${R^{ - 1}}$ is
$\{(8, 11), (10, 13)\}$
$\{(11, 18), (13, 10)\}$
$\{(10, 13), (8, 11)\}$
None of these
Let $L$ be the set of all straight lines in the Euclidean plane. Two lines ${l_1}$ and ${l_2}$ are said to be related by the relation $R$ iff ${l_1}$ is parallel to ${l_2}$. Then the relation $R$ is
The number of symmetric relations defined on the set $\{1,2,3,4\}$ which are not reflexive is
Let $A =\{2,3,4,5, \ldots ., 30\}$ and $^{\prime} \simeq ^{\prime}$ be an equivalence relation on $A \times A ,$ defined by $(a, b) \simeq (c, d),$ if and only if $a d=b c .$ Then the number of ordered pairs which satisfy this equivalence relation with ordered pair $(4,3)$ is equal to :
Let $\mathrm{A}=\{1,2,3,4\}$ and $\mathrm{R}=\{(1,2),(2,3),(1,4)\}$ be a relation on $\mathrm{A}$. Let $\mathrm{S}$ be the equivalence relation on $A$ such that $\mathrm{R} \subset \mathrm{S}$ and the number of elements in $\mathrm{S}$ is $\mathrm{n}$. Then, the minimum value of $\mathrm{n}$ is...............
Let $R$ be a relation on the set $N$ be defined by $\{(x, y)| x, y \in N, 2x + y = 41\}$. Then $R$ is