$R$ એ $N$ થી $N$ નો સંબંધ છે. $R = \{ (a,b):a,b \in N$ અને $a = {b^2}\} $ થાય તે રીતે વ્યાખ્યાયિત છે, તો શું નીચેનાં વિધાનો સત્ય છે? જો $(a, b) \in R,$ તો $(b, a) \in R$ પ્રત્યેક વિધાનમાં તમારા જવાબની સત્યાર્થતા ચકાસો.
$R=\left\{(a, b): a, b \in N \text { and } a=b^{2}\right\}$
It can be seen that $(9,3)$ $\in N$ because $9,3 \in N$ and $9=3^{2} .$ Now, $3 \neq 9^{2}=81$ $(3,9)$ $\notin N$
Therefore, the statement $"(a, b) \in R,$ implies $"(b, a) \in R "$ is not true.
આકૃતિમાં $P$ થી $Q$ નો સંબંધ દશાવેલ છે. આ સંબંધને ગુણધર્મની રીતે લખો. તેનો પ્રદેશ અને વિસ્તાર શું થશે?
જો $A=\{1,2,3,4,6\} .$ $R=\{ (a,b):a,b \in A,b$ એ $a$ વડે વિભાજ્ય છે. $\} $ થાય તે રીતે સંબંધ $R$ એ $A$ પર વ્યાખ્યાયિત છે, $R$ ને યાદીની રીતે લખો.
જો $A=\{1,2,3,4,6\} .$ $R=\{ (a,b):a,b \in A,b$ એ $a$ વડે વિભાજ્ય છે. $\} $ થાય તે રીતે સંબંધ $R$ એ $A$ પર વ્યાખ્યાયિત છે, $R$ નો વિસ્તાર મેળવો.
પ્રાકૃતિક સંખ્યાગણ પર સંબંધ $R$ એ $\{(a, b) : a - b = 3\}$ દ્વારા વ્યાખ્યાયિત હોય તો $R=$
$A=\{1,2,3,5\}$ અને $B=\{4,6,9\} .$ $R = \{ (x,y):$ $x$ અને $y$ નો તફાવત અયુગ્મ સંખ્યા છે ${\rm{; }}x \in A,y \in B\} $ થાય - તે રીતે સંબંધ $A$ થી $B$ પર વ્યાખ્યાયિત છે. $R$ ને યાદીની રીતે લખો.