$R=\{(x, y): y=x+5,$ $x$ એ $4$ થી નાની પ્રાકૃતિક સંખ્યા છે, $x, y \in N \}$ થાય તે રીતે એક સંબંધ $N$ પર વ્યાખ્યાયિત છે. $R$ ને યાદીની રીતે લખો. $R$ નો પ્રદેશ તેમજ વિસ્તાર મેળવો.
$R=\{(x, y): y=x+5, x $ is a natural mumber less than $ 4, x, y \in N \}$
The natural numbers less than $4$ are $1,2,$ and $3 .$
$\therefore R=\{(1,6),(2,7),(3,8)\}$
The domain of $R$ is the set of all first elements of the ordered pairs in the relation.
$\therefore$ Domain of $R=\{1,2,3\}$ The range of $R$ is the set of all second
elements of the ordered pairs in the relation.
$\therefore$ Range of $R=\{6,7,8\}$
$R =\{(x, x+5): x \in\{0,1,2,3,4,5\}\}$ થાય તે રીતે વ્યાખ્યાયિત સંબંધનો પ્રદેશ તેમજ વિસ્તાર મેળવો.
આકૃતિમાં $P$ થી $Q$ નો સંબંધ દર્શાવેલ છે. આ સંબંધને ગુણધર્મની રીતે લખો. તેનો પ્રદેશ અને વિસ્તાર શું થશે ?
પ્રાકૃતિક સંખ્યાગણ પર સંબંધ $R$ એ $\{(a, b) : a - b = 3\}$ દ્વારા વ્યાખ્યાયિત હોય તો $R=$
જો $R$ એ $Q$ થી $Q$ પરનો $R=\{(a, b): a, b \in Q$ અને $a-b \in Z \}$ થાય તે રીતે વ્યાખ્યાયિત સંબંધ છે. તો બતાવો કે, પ્રત્યેક $a \in Q$ માટે, $(a, a) \in R$
$R$ એ $N$ થી $N$ નો સંબંધ છે. $R = \{ (a,b):a,b \in N$ અને $a = {b^2}\} $ થાય તે રીતે વ્યાખ્યાયિત છે, તો શું નીચેનાં વિધાનો સત્ય છે? જો $(a, b) \in R ,(b, c) \in R$ તો $(a, c) \in R$ પ્રત્યેક વિધાનમાં તમારા જવાબની સત્યાર્થતા ચકાસો.