Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

$\frac{\cos A-\sin A+1}{\cos A+\sin A-1}=\operatorname{cosec} A+\cot A,$ using the identity $\operatorname{cosec}^{2} A=1+\cot ^{2} A$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\frac{\cos A-\sin A+1}{\cos A+\sin A-1}=\operatorname{cosec} A+\cot A$

Using the identity $\operatorname{cosec}^{2} A =1+\cot ^{2} A$

$L.H.S.$ $=\frac{\cos A -\sin A +1}{\cos A +\sin A -1}$

$=\frac{\frac{\cos A}{\sin A}-\frac{\sin A}{\sin A}+\frac{1}{\sin A}}{\frac{\cos A}{\sin A}+\frac{\sin A}{\sin A}+\frac{1}{\sin A}}$

$=\frac{\cot A-1+\operatorname{cosec} A}{\cot A+1-\operatorname{cosec} A}$

$=\frac{\{(\cot A)-(1-\operatorname{cosec} A)\}\{(\cot A)-(1-\operatorname{cosec} A)\}}{\{(\cot A)+(1-\operatorname{cosec} A)\}\{(\cot A)-(1-\operatorname{cosec} A)\}}$

$=\frac{(\cot A-1+\operatorname{cosec} A)^{2}}{(\cot A)^{2}-(1-\operatorname{cosec} A)^{2}}$

$=\frac{\cot ^{2} A+1+\operatorname{cosec}^{2} A-2 \cot A-2 \operatorname{cosec} A+2 \cot A \operatorname{cosec} A}{\cot ^{2} A-\left(1+\operatorname{cosec}^{2} A-2 \operatorname{cosec} A\right)}$

$=\frac{2 \operatorname{cosec}^{2} A+2 \cot A \operatorname{cosec} A-2 \cot A-2 \operatorname{cosec} A}{\cot ^{2} A-1-\operatorname{cosec}^{2} A+2 \operatorname{cosec} A}$

$=\frac{2 \operatorname{cosec} A(\operatorname{cosec} A+\cot A)-2(\cot A+\operatorname{cosec} A)}{\cot ^{2} A-\operatorname{cosec}^{2} A-1+2 \operatorname{cosec} A}$

$=\frac{(\operatorname{cosec} A+\cot A)(2 \operatorname{cosec} A-2)}{-1-1+2 \operatorname{cosec} A}$

$=\frac{(\operatorname{cosec} A+\cot A)(2 \operatorname{cosec} A-2)}{(2 \operatorname{cosec} A-2)}$

$=\operatorname{cosec} A+\cot A$

$= R . H.S.$

Similar Questions

Show that:

$(i)$ $\tan 48^{\circ} \tan 23^{\circ} \tan 42^{\circ} \tan 67^{\circ}=1$

$(ii)$ $\cos 38^{\circ} \cos 52^{\circ}-\sin 38^{\circ} \sin 52^{\circ}=0$

In $\triangle$ $PQR,$ right-angled at $Q$ (see $Fig.$), $PQ =3 \,cm$ and $PR =6 \,cm$. Determine $\angle QPR$ and $\angle PRQ$.

If $\sec 4 A =\operatorname{cosec}\left( A -20^{\circ}\right),$ where $4 A$ is an acute angle, find the value of $A$. (in $^{\circ}$)

$\frac{2 \tan 30^{\circ}}{1-\tan ^{2} 30^{\circ}}=$

$(\sec A+\tan A)(1-\sin A)=..........$