${\vec  A }$, ${\vec  B }$ and ${\vec  C }$ are three non-collinear, non co-planar vectors. What can you say about directin of $\vec  A \, \times \,\left( {\vec  B \, \times \vec  {\,C} } \right)$ ?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The direction of $(\vec{B} \times \vec{C})$ will be perpendicular to the plane containing $\vec{B}$ and $\vec{C}$. $\vec{A} \times(\vec{B} \times \vec{C})$ will lie in the plane of $\vec{B}$ and $\vec{C}$ and is perpendicular to $\vec{A}$.

Similar Questions

The values of $x$ and $y$ for which vectors $\vec A = \left( {6\hat i + x\hat j - 2\hat k} \right)$ and $\vec B = \left( {5\hat i - 6\hat j - y\hat k} \right)$ may be parallel are

Explain the geometrical interpretation of scalar product of two vectors.

If $\left| {\vec A } \right|\, = \,2$ and $\left| {\vec B } \right|\, = \,4$ then match the relation in Column $-I$ with the angle $\theta $ between $\vec A$ and $\vec B$ in Column $-II$.

Column $-I$ Column $-II$
$(a)$ $\left| {\vec A \, \times \,\,\vec B } \right|\, = \,\,0$ $(i)$ $\theta = \,{30^o}$
$(b)$ $\left| {\vec A \, \times \,\,\vec B } \right|\, = \,\,8$ $(ii)$ $\theta = \,{45^o}$
$(c)$ $\left| {\vec A \, \times \,\,\vec B } \right|\, = \,\,4$ $(iii)$ $\theta = \,{90^o}$
$(d)$ $\left| {\vec A \, \times \,\,\vec B } \right|\, = \,\,4\sqrt 2$ $(iv)$ $\theta = \,{0^o}$

Vector $A$ is pointing eastwards and vector $B$ northwards. Then, match the following two columns.
Colum $I$ Colum $II$
$(A)$ $(A+B)$ $(p)$ North-east
$(B)$ $(A-B)$ $(q)$ Vertically upwards
$(C)$ $(A \times B)$ $(r)$ Vertically downwards
$(D)$ $(A \times B) \times(A \times B)$ $(s)$ None

Let $\left| {{{\vec A}_1}} \right| = 3,\,\left| {\vec A_2} \right| = 5$, and $\left| {{{\vec A}_1} + {{\vec A}_2}} \right| = 5$. The value of $\left( {2{{\vec A}_1} + 3{{\vec A}_2}} \right)\cdot \left( {3{{\vec A}_1} - 2{{\vec A}_2}} \right)$ is

  • [JEE MAIN 2019]