Vector $A$ is pointing eastwards and vector $B$ northwards. Then, match the following two columns.
Colum $I$ Colum $II$
$(A)$ $(A+B)$ $(p)$ North-east
$(B)$ $(A-B)$ $(q)$ Vertically upwards
$(C)$ $(A \times B)$ $(r)$ Vertically downwards
$(D)$ $(A \times B) \times(A \times B)$ $(s)$ None

  • A
    $( A \rightarrow p , s , B \rightarrow s , C \rightarrow q , D \rightarrow s )$
  • B
    $( A \rightarrow p , s , B \rightarrow r , C \rightarrow q , D \rightarrow s )$
  • C
    $( A \rightarrow p , s , B \rightarrow q , C \rightarrow r , D \rightarrow s )$
  • D
    $( A \rightarrow p ,  B \rightarrow s , C \rightarrow q , D \rightarrow s )$

Similar Questions

If $\overrightarrow A \times \overrightarrow B = \overrightarrow C ,$then which of the following statements is wrong

For three vectors $\vec{A}=(-x \hat{i}-6 \hat{j}-2 \hat{k})$, $\vec{B}=(-\hat{i}+4 \hat{j}+3 \hat{k})$ and $\vec{C}=(-8 \hat{i}-\hat{j}+3 \hat{k})$, if $\overrightarrow{\mathrm{A}} \cdot(\overrightarrow{\mathrm{B}} \times \overrightarrow{\mathrm{C}})=0$, them value of $\mathrm{x}$ is. . . . . .. 

  • [JEE MAIN 2024]

$\hat i.\left( {\hat j \times \,\,\hat k} \right) + \;\,\hat j\,.\,\left( {\hat k \times \hat i} \right) + \hat k.\left( {\hat i \times \hat j} \right)=$

If $F _1$ and $F _2$ are two vectors of equal magnitudes $F$ such that $\left| F _1 \cdot F _2\right|=\left| F _1 \times F _2\right|$, then $\left| F _1+ F _2\right|$ equals to

A vector ${\overrightarrow F _1}$is along the positive $X-$axis. If its vector product with another vector ${\overrightarrow F _2}$ is zero then ${\overrightarrow F _2}$ could be