Explain the geometrical interpretation of scalar product of two vectors.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Suppose the scalar product of two vectors $\vec{A}$ and $\vec{B}$ is given as in figure (a)

$\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}=|\overrightarrow{\mathrm{A}}||\overrightarrow{\mathrm{B}}| \cos \theta$

$\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}=\mathrm{AB} \cos \theta$

$\ldots$ $(1)$ which is scalar.

where $\theta$ is the angle between $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$

This product is shown in two ways.

$\star$ Method $1:$

According to figure (b), draw a perpendicular from the head of $\vec{B}$ on $\vec{A}$ resulting OM which is shown as in figure OM is the projection of $\vec{B}$ on to $\vec{A}$ or it is called the component of $\vec{B}$ in the direction of $\overrightarrow{\mathrm{A}}$.

$\therefore\;OM=$ componant of $\vec{B}$ along $\vec{A}$

$=B \cos \theta$

$\therefore \overrightarrow{ A } \cdot \overrightarrow{ B }$$=A B \cos \theta$

$=A(B \cos \theta)$

$=A(O M)$

$=\text { Magnitude of } \vec{A} \times \operatorname{component} \text { of } \vec{B} \text { along } \vec{A}$

887-s46

Similar Questions

If $\vec{a}$ and $\vec{b}$ makes an angle $\cos ^{-1}\left(\frac{5}{9}\right)$ with each other, then $|\vec{a}+\vec{b}|=\sqrt{2}|\vec{a}-\vec{b}|$ for $|\vec{a}|=n|\vec{b}|$ The integer value of $n$ is . . . . . . .. 

  • [JEE MAIN 2024]

$\overrightarrow A = 2\hat i + 4\hat j + 4\hat k$ and $\overrightarrow B = 4\hat i + 2\hat j - 4\hat k$ are two vectors. The angle between them will be ........ $^o$

The area of the parallelogram determined by $A =2 \hat{ i }+\hat{ j }-3 \hat{ k }$ and $B =12 \hat{ j }-2 \hat{ k }$ is approximately

The two vectors have magnitudes $3$ and $5$. If angle between them is $60^o$, then the dot product of two vectors will be

Let $\vec A\, = \,(\hat i\, + \,\hat j)\,$  and $\vec B\, = \,(2\hat i\, - \,\hat j)\,.$  The magnitude of a coplanar vector $\vec C$ such that  $\vec A\cdot \vec C\, = \,\vec B\cdot \vec C\, = \vec A\cdot \vec B$ is given by

  • [JEE MAIN 2018]