Explain the geometrical interpretation of scalar product of two vectors.
Suppose the scalar product of two vectors $\vec{A}$ and $\vec{B}$ is given as in figure (a)
$\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}=|\overrightarrow{\mathrm{A}}||\overrightarrow{\mathrm{B}}| \cos \theta$
$\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}=\mathrm{AB} \cos \theta$
$\ldots$ $(1)$ which is scalar.
where $\theta$ is the angle between $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$
This product is shown in two ways.
$\star$ Method $1:$
According to figure (b), draw a perpendicular from the head of $\vec{B}$ on $\vec{A}$ resulting OM which is shown as in figure OM is the projection of $\vec{B}$ on to $\vec{A}$ or it is called the component of $\vec{B}$ in the direction of $\overrightarrow{\mathrm{A}}$.
$\therefore\;OM=$ componant of $\vec{B}$ along $\vec{A}$
$=B \cos \theta$
$\therefore \overrightarrow{ A } \cdot \overrightarrow{ B }$$=A B \cos \theta$
$=A(B \cos \theta)$
$=A(O M)$
$=\text { Magnitude of } \vec{A} \times \operatorname{component} \text { of } \vec{B} \text { along } \vec{A}$
If $\vec{a}$ and $\vec{b}$ makes an angle $\cos ^{-1}\left(\frac{5}{9}\right)$ with each other, then $|\vec{a}+\vec{b}|=\sqrt{2}|\vec{a}-\vec{b}|$ for $|\vec{a}|=n|\vec{b}|$ The integer value of $n$ is . . . . . . ..
$\overrightarrow A = 2\hat i + 4\hat j + 4\hat k$ and $\overrightarrow B = 4\hat i + 2\hat j - 4\hat k$ are two vectors. The angle between them will be ........ $^o$
The two vectors have magnitudes $3$ and $5$. If angle between them is $60^o$, then the dot product of two vectors will be
Let $\vec A\, = \,(\hat i\, + \,\hat j)\,$ and $\vec B\, = \,(2\hat i\, - \,\hat j)\,.$ The magnitude of a coplanar vector $\vec C$ such that $\vec A\cdot \vec C\, = \,\vec B\cdot \vec C\, = \vec A\cdot \vec B$ is given by