If $\left| {\vec A } \right|\, = \,2$ and $\left| {\vec B } \right|\, = \,4$ then match the relation in Column $-I$ with the angle $\theta $ between $\vec A$ and $\vec B$ in Column $-II$.

Column $-I$ Column $-II$
$(a)$ $\left| {\vec A \, \times \,\,\vec B } \right|\, = \,\,0$ $(i)$ $\theta = \,{30^o}$
$(b)$ $\left| {\vec A \, \times \,\,\vec B } \right|\, = \,\,8$ $(ii)$ $\theta = \,{45^o}$
$(c)$ $\left| {\vec A \, \times \,\,\vec B } \right|\, = \,\,4$ $(iii)$ $\theta = \,{90^o}$
$(d)$ $\left| {\vec A \, \times \,\,\vec B } \right|\, = \,\,4\sqrt 2$ $(iv)$ $\theta = \,{0^o}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Given $|\mathrm{A}|=2$ and $|\mathrm{B}|=4$

$(a)$ $|\vec{A} \times \vec{B}|=A B \sin \theta=0$

$\therefore \sin \theta=0$

$\therefore \theta=0$

$\therefore$ Option $(a)$ matches with option $(iv)$.

$(b)$ $|\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}|=\mathrm{AB} \sin \theta=8$ $\therefore 2 \times 4 \sin \theta=8$ $\therefore \sin \theta=1=\sin 90^{\circ}$ $\therefore \theta=90^{\circ}$ $\therefore$ Option (b) matches with option (iii)

$\therefore$ Option (b) matches with (c) $|\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}|=\mathrm{AB} \sin \theta=4$

$(c)$ $|\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}|=\mathrm{AB}$ $\therefore 2 \times 4 \sin \theta=4$

$\therefore \sin \theta=\frac{1}{2}=\sin 30^{\circ}$

$\therefore \theta=30^{\circ}$

$\therefore$ Option $(c)$ matches with option $(i)$.

$(d)$ $|\vec{A} \times \vec{B}|=A B \sin \theta=4 \sqrt{2}$

$\therefore 2 \times 4 \sin \theta=4 \sqrt{2}$

$\therefore \sin \theta=\frac{1}{\sqrt{2}}=\sin 45^{\circ}$

$\therefore \theta=45^{\circ}$

Option $(d)$ matches with option $(ii)$.

Similar Questions

$\vec A$ and $\vec B$ are two vectors and $\theta$ is the angle between them, if $|\vec A \times \vec B|=\sqrt 3(\vec A \cdot \vec B) $ the value of $\theta$ is ......... $^o$

  • [AIPMT 2007]

Two adjacent sides of a parallelogram are represented by the two vectors $\hat i + 2\hat j + 3\hat k$ and $3\hat i - 2\hat j + \hat k$. What is the area of parallelogram

What is the angle between $\vec A\,\,$ and  $\vec B\,\,$ if $\vec A\,\,$ and  $\vec B\,\,$ are the adjacent sides of a parallelogran drawn from a common point and the area of the parallelogram is $\frac {AB}{2}$

If $| A |=2,| B |=5$ and $| A \times B |=8$ Angle between $A$ and $B$ is acute, then $A \cdot B$ is

$\overrightarrow A $ and $\overrightarrow B $ are two vectors given by $\overrightarrow A  = 2\widehat i + 3\widehat j$ and $\overrightarrow B  = \widehat i + \widehat j$. The magnitude of  the component (projection) of $\overrightarrow A$ on $\overrightarrow  B$ is