If $\left| {\vec A } \right|\, = \,2$ and $\left| {\vec B } \right|\, = \,4$ then match the relation in Column $-I$ with the angle $\theta $ between $\vec A$ and $\vec B$ in Column $-II$.
Column $-I$ | Column $-II$ |
$(a)$ $\left| {\vec A \, \times \,\,\vec B } \right|\, = \,\,0$ | $(i)$ $\theta = \,{30^o}$ |
$(b)$ $\left| {\vec A \, \times \,\,\vec B } \right|\, = \,\,8$ | $(ii)$ $\theta = \,{45^o}$ |
$(c)$ $\left| {\vec A \, \times \,\,\vec B } \right|\, = \,\,4$ | $(iii)$ $\theta = \,{90^o}$ |
$(d)$ $\left| {\vec A \, \times \,\,\vec B } \right|\, = \,\,4\sqrt 2$ | $(iv)$ $\theta = \,{0^o}$ |
Given $|\mathrm{A}|=2$ and $|\mathrm{B}|=4$
$(a)$ $|\vec{A} \times \vec{B}|=A B \sin \theta=0$
$\therefore \sin \theta=0$
$\therefore \theta=0$
$\therefore$ Option $(a)$ matches with option $(iv)$.
$(b)$ $|\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}|=\mathrm{AB} \sin \theta=8$ $\therefore 2 \times 4 \sin \theta=8$ $\therefore \sin \theta=1=\sin 90^{\circ}$ $\therefore \theta=90^{\circ}$ $\therefore$ Option (b) matches with option (iii)
$\therefore$ Option (b) matches with (c) $|\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}|=\mathrm{AB} \sin \theta=4$
$(c)$ $|\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}|=\mathrm{AB}$ $\therefore 2 \times 4 \sin \theta=4$
$\therefore \sin \theta=\frac{1}{2}=\sin 30^{\circ}$
$\therefore \theta=30^{\circ}$
$\therefore$ Option $(c)$ matches with option $(i)$.
$(d)$ $|\vec{A} \times \vec{B}|=A B \sin \theta=4 \sqrt{2}$
$\therefore 2 \times 4 \sin \theta=4 \sqrt{2}$
$\therefore \sin \theta=\frac{1}{\sqrt{2}}=\sin 45^{\circ}$
$\therefore \theta=45^{\circ}$
Option $(d)$ matches with option $(ii)$.
$\vec A$ and $\vec B$ are two vectors and $\theta$ is the angle between them, if $|\vec A \times \vec B|=\sqrt 3(\vec A \cdot \vec B) $ the value of $\theta$ is ......... $^o$
Two adjacent sides of a parallelogram are represented by the two vectors $\hat i + 2\hat j + 3\hat k$ and $3\hat i - 2\hat j + \hat k$. What is the area of parallelogram
What is the angle between $\vec A\,\,$ and $\vec B\,\,$ if $\vec A\,\,$ and $\vec B\,\,$ are the adjacent sides of a parallelogran drawn from a common point and the area of the parallelogram is $\frac {AB}{2}$
$\overrightarrow A $ and $\overrightarrow B $ are two vectors given by $\overrightarrow A = 2\widehat i + 3\widehat j$ and $\overrightarrow B = \widehat i + \widehat j$. The magnitude of the component (projection) of $\overrightarrow A$ on $\overrightarrow B$ is