The number of terms in an $A .P.$ is even ; the sum of the odd terms in it is $24$ and that the even terms is $30$. If the last term exceeds the first term by $10\frac{1}{2}$ , then the number of terms in the $A.P.$ is
$4$
$8$
$12$
$16$
If ${S_k}$ denotes the sum of first $k$ terms of an arithmetic progression whose first term and common difference are $a$ and $d$ respectively, then ${S_{kn}}/{S_n}$ be independent of $n$ if
If ${a_1},\;{a_2},\,{a_3},......{a_{24}}$ are in arithmetic progression and ${a_1} + {a_5} + {a_{10}} + {a_{15}} + {a_{20}} + {a_{24}} = 225$, then ${a_1} + {a_2} + {a_3} + ........ + {a_{23}} + {a_{24}} = $
If in the equation $a{x^2} + bx + c = 0,$ the sum of roots is equal to sum of square of their reciprocals, then $\frac{c}{a},\frac{a}{b},\frac{b}{c}$ are in
If the sum of three numbers of a arithmetic sequence is $15$ and the sum of their squares is $83$, then the numbers are
For three positive integers $p , q , r , x ^{ pq p ^2}= y ^{ qr }= z ^{ p ^2 r }$ and $r=p q+1$ such that $3,3 \log _y x, 3 \log _z y, 7 \log _x z$ are in A.P. with common difference $\frac{1}{2}$. Then $r - p - q$ is equal to