If the ${p^{th}},\;{q^{th}}$ and ${r^{th}}$ term of an arithmetic sequence are $a , b$ and $c$ respectively, then the value of $[a(q - r)$ + $b(r - p)$ $ + c(p - q)] = $

  • A

    $1$

  • B

    $- 1$

  • C

    $0$

  • D

    $1/2$

Similar Questions

Find the sum to $n$ terms of the $A.P.,$ whose $k^{\text {th }}$ term is $5 k+1$

Let ${a_1},{a_2},.......,{a_{30}}$ be an $A.P.$, $S = \sum\limits_{i = 1}^{30} {{a_i}} $ and $T = \sum\limits_{i = 1}^{15} {{a_{2i - 1}}} $.If ${a_5} = 27$ and $S - 2T = 75$ , then $a_{10}$ is equal to

  • [JEE MAIN 2019]

If $a,\;b,\;c$ are in $A.P.$, then $\frac{{{{(a - c)}^2}}}{{({b^2} - ac)}} = $

Insert five numbers between $8$ and $26$ such that resulting sequence is an $A.P.$

If $\log 2,\;\log ({2^n} - 1)$ and $\log ({2^n} + 3)$ are in $A.P.$, then $n =$