अनुक्रम के पाँच पद लिखिए तथा संगत श्रेणी ज्ञात कीजिए
$a_{1}=3, a_{n}=3 a_{n-1}+2$ सभी $n>1$ के लिए
$a_{1}=3, a_{n}=3 a_{n-1}+2$ for $n\,>\,1$
$\Rightarrow a_{2}=3 a_{1}+2=3(3)+2=11$
$a_{3}=3 a_{2}+2=3(11)+2=35$
$a_{4}=3 a_{3}+2=3(35)+2=107$
$a_{5}=3 a_{4}+2=3(107)+2=323$
Hence, the first five terms of the sequence are $3,11,35,107$ and $323$
The corresponding series is $3+11+35+107+323+\ldots$
यदि $a$ और $b$के बीच का समान्तर माध्य $\frac{{{a^{n + 1}} + {b^{n + 1}}}}{{{a^n} + {b^n}}}$है, तो $n$ का मान होगा
यदि $a,b,c$ समान्तर श्रेणी में हों तो $\frac{1}{{\sqrt a + \sqrt b }},\,\frac{1}{{\sqrt a + \sqrt c }},$ $\frac{1}{{\sqrt b + \sqrt c }}$ होंगे
यदि समान्तर श्रेणी का प्रथम पद, दूसरा पद और अन्तिम पद क्रमश: $a,\;b,\;2a$ हैं, तो योग होगा
यदि किसी समान्तर श्रेणी के $p$ वें पद का $p$ गुना, $q$ वें पद के $q$ गुना के बराबर है, तब $(p + q)$ वाँ पद है
यदि $a,\;b,\;c$ समान्तर श्रेणी में हों, तो $\frac{{{{(a - c)}^2}}}{{({b^2} - ac)}}$ =