Write the first five terms of the following sequence and obtain the corresponding series :

$a_{1}=3, a_{n}=3 a_{n-1}+2$ for all $n\,>\,1$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$a_{1}=3, a_{n}=3 a_{n-1}+2$ for $n\,>\,1$

$\Rightarrow a_{2}=3 a_{1}+2=3(3)+2=11$

$a_{3}=3 a_{2}+2=3(11)+2=35$

$a_{4}=3 a_{3}+2=3(35)+2=107$

$a_{5}=3 a_{4}+2=3(107)+2=323$

Hence, the first five terms of the sequence are $3,11,35,107$ and $323$

The corresponding series is $3+11+35+107+323+\ldots$

Similar Questions

If $< {a_n} >$ is an $A.P$. and $a_1 + a_4 + a_7 + .......+ a_{16} = 147$, then $a_1 + a_6 + a_{11} + a_{16}$ is equal to

Suppose $a_{1}, a_{2}, \ldots, a_{ n }, \ldots$ be an arithmetic progression of natural numbers. If the ratio of the sum of the first five terms of the sum of first nine terms of the progression is $5: 17$ and $110< a_{15} < 120$ , then the sum of the first ten terms of the progression is equal to -

  • [JEE MAIN 2022]

If the $9^{th}$ term of an $A.P.$ be zero, then the ratio of its $29^{th}$ and $19^{th}$ term is

The sides of a triangle are distinct positive integers in an arithmetic progression. If the smallest side is $10$, the number of such triangles is

  • [KVPY 2012]

The houses on one side of a road are numbered using consecutive even numbers. The sum of the numbers of all the houses in that row is $170$ . If there are at least $6$ houses in that row and $a$ is the number of the sixth house, then

  • [KVPY 2014]